109 research outputs found

    CT Image Reconstruction by Spatial-Radon Domain Data-Driven Tight Frame Regularization

    Full text link
    This paper proposes a spatial-Radon domain CT image reconstruction model based on data-driven tight frames (SRD-DDTF). The proposed SRD-DDTF model combines the idea of joint image and Radon domain inpainting model of \cite{Dong2013X} and that of the data-driven tight frames for image denoising \cite{cai2014data}. It is different from existing models in that both CT image and its corresponding high quality projection image are reconstructed simultaneously using sparsity priors by tight frames that are adaptively learned from the data to provide optimal sparse approximations. An alternative minimization algorithm is designed to solve the proposed model which is nonsmooth and nonconvex. Convergence analysis of the algorithm is provided. Numerical experiments showed that the SRD-DDTF model is superior to the model by \cite{Dong2013X} especially in recovering some subtle structures in the images

    Artificial Intelligence in Radiation Therapy

    Get PDF
    Artificial intelligence (AI) has great potential to transform the clinical workflow of radiotherapy. Since the introduction of deep neural networks, many AI-based methods have been proposed to address challenges in different aspects of radiotherapy. Commercial vendors have started to release AI-based tools that can be readily integrated to the established clinical workflow. To show the recent progress in AI-aided radiotherapy, we have reviewed AI-based studies in five major aspects of radiotherapy including image reconstruction, image registration, image segmentation, image synthesis, and automatic treatment planning. In each section, we summarized and categorized the recently published methods, followed by a discussion of the challenges, concerns, and future development. Given the rapid development of AI-aided radiotherapy, the efficiency and effectiveness of radiotherapy in the future could be substantially improved through intelligent automation of various aspects of radiotherapy

    A comprehensive study on the relationship between image quality and imaging dose in low-dose cone beam CT

    Full text link
    While compressed sensing (CS) based reconstructions have been developed for low-dose CBCT, a clear understanding on the relationship between the image quality and imaging dose at low dose levels is needed. In this paper, we qualitatively investigate this subject in a comprehensive manner with extensive experimental and simulation studies. The basic idea is to plot image quality and imaging dose together as functions of number of projections and mAs per projection over the whole clinically relevant range. A clear understanding on the tradeoff between image quality and dose can be achieved and optimal low-dose CBCT scan protocols can be developed for various imaging tasks in IGRT. Main findings of this work include: 1) Under the CS framework, image quality has little degradation over a large dose range, and the degradation becomes evident when the dose < 100 total mAs. A dose < 40 total mAs leads to a dramatic image degradation. Optimal low-dose CBCT scan protocols likely fall in the dose range of 40-100 total mAs, depending on the specific IGRT applications. 2) Among different scan protocols at a constant low-dose level, the super sparse-view reconstruction with projection number less than 50 is the most challenging case, even with strong regularization. Better image quality can be acquired with other low mAs protocols. 3) The optimal scan protocol is the combination of a medium number of projections and a medium level of mAs/view. This is more evident when the dose is around 72.8 total mAs or below and when the ROI is a low-contrast or high-resolution object. Based on our results, the optimal number of projections is around 90 to 120. 4) The clinically acceptable lowest dose level is task dependent. In our study, 72.8mAs is a safe dose level for visualizing low-contrast objects, while 12.2 total mAs is sufficient for detecting high-contrast objects of diameter greater than 3 mm.Comment: 19 pages, 12 figures, submitted to Physics in Medicine and Biolog

    Artificial Intelligence-based Motion Tracking in Cancer Radiotherapy: A Review

    Full text link
    Radiotherapy aims to deliver a prescribed dose to the tumor while sparing neighboring organs at risk (OARs). Increasingly complex treatment techniques such as volumetric modulated arc therapy (VMAT), stereotactic radiosurgery (SRS), stereotactic body radiotherapy (SBRT), and proton therapy have been developed to deliver doses more precisely to the target. While such technologies have improved dose delivery, the implementation of intra-fraction motion management to verify tumor position at the time of treatment has become increasingly relevant. Recently, artificial intelligence (AI) has demonstrated great potential for real-time tracking of tumors during treatment. However, AI-based motion management faces several challenges including bias in training data, poor transparency, difficult data collection, complex workflows and quality assurance, and limited sample sizes. This review serves to present the AI algorithms used for chest, abdomen, and pelvic tumor motion management/tracking for radiotherapy and provide a literature summary on the topic. We will also discuss the limitations of these algorithms and propose potential improvements.Comment: 36 pages, 5 Figures, 4 Table

    A Megavoltage CT Image Enhancement Method for Image-Guided and Adaptive Helical TomoTherapy

    Get PDF
    Purpose: To propose a novel method to improve the mega-voltage CT (MVCT) image quality for helical TomoTherapy while maintaining the stability on dose calculation.Materials and Methods: The Block-Matching 3D-transform (BM3D) and Discriminative Feature Representation (DFR) methods were combined into a novel BM3D + DFR method for their respective advantages. A phantom (Catphan504) and three serials of clinical (head &amp; neck, chest, and pelvis) MVCT images from 30 patients were acquired using the helical TomoTherapy system. The contrast-to-noise ratio (CNR) and edge detection algorithm (canny) was employed for image quality comparisons between the original and BM3D + DFR enhanced MVCT. A simulated rectangular field of 6 MV X-ray beams were vertically delivered on the original and post-processed MVCT serials of the same CT density phantom, and the dose curves on both serials were compared to test the effects of image enhancement on dose calculation accuracy.Results: In total, 466 transversal MVCT slices were acquired and processed by both BM3D and the proposed BM3D + DFR methods. Compared to the original MVCT image, the BM3D + DFR method presented a remarkable improvement in terms of the soft tissue contrast and noise reduction. For the phantom image, the CNR of the region of interest (ROI) was improved from 1.70 to 4.03. The average CNR of ROIs for 10 patients from each anatomical group, were increased significantly from 1.45 ± 1.51 to 2.09 ± 1.68 for the head &amp; neck (p &lt; 0.001), from 0.92 ± 0.78 to 1.36 ± 0.85 for the chest (p &lt; 0.001), and from 1.12 ± 1.22 to 1.76 ± 1.31 for the pelvis (p &lt; 0.001), respectively. The canny edge detection operator showed that BM3D + DFR provided clearer organ boundaries with less chaos. The root-mean-square of the dosimetry difference on the iso-center passed horizontal dose profile curves and vertical percentage depth dose curves were only 0.09% and 0.06%, respectively.Conclusions: The proposed BM3D + DFR method is feasible to improve the soft tissue contrast for the original MVCT images with coincidence in dose calculation and without compromising resolution. After integration in clinical workflow, the post-processed MVCT may be better applied on image-guided and adaptive helical TomoTherapy

    Medical Image Enhancement using Deep Learning and Tensor Factorization Techniques

    Get PDF
    La résolution spatiale des images acquises par tomographie volumique à faisceau conique (CBCT) est limitée par la géométrie des capteurs, leur sensibilité, les mouvements du patient, les techniques de reconstruction d'images et la limitation de la dose de rayonnement. Le modèle de dégradation d'image considéré dans cette thèse consiste en un opérateur de ou avec la fonction d'étalement du système d'imagerie (PSF), un opérateur de décimation, et du bruit, qui relient les volumes CBCT à une image 3D super-résolue à estimer. Les méthodes proposées dans cette thèse (SISR - single image super-résolution) ont comme objectif d'inverser ce modèle direct, c'est à dire d'estimer un volume haute résolution à partir d'une image CBCT. Les algorithmes ont été évalués dans le cadre d'une application dentaire, avec comme vérité terrain les images haute résolution acquises par micro CT (µCT), qui utilise des doses de rayonnement très importantes, incompatibles avec les applications cliniques. Nous avons proposé une approche de SISR par deep learning, appliquée individuellement à des coupes CBCT. Deux types de réseaux ont été évalués : U-net et subpixel. Les deux ont amélioré les volumes CBCT, avec un gain en PSNR de 21 à 22 dB et en coefficient de Dice pour la segmentation canalaire de 1 à 2.2 %. Le gain a été plus particulièrement important dans la partie apicale des dents, ce qui représente un résultat important étant donnée son importance pour les applications cliniques. Nous avons proposé des algorithmes de SISR basés sur la décomposition canonique polyadique des tenseurs. Le principal avantage de cette méthode, lié à l'utilisation de la théorie des tenseur, est d'utiliser la structure 3D des volumes CBCT. L'algorithme proposé regroupe plusieurs étapes: débruitage base sur la factorisation des tenseurs, déconvolution et super-résolution, avec un faible nombre d'hyperparamètres. Le temps d'exécution est très faible par rapport aux algorithmes existants (deux ordres de magnitude plus petit), pour des performances légèrement supérieures (gain de 1.2 à 1.5 dB en PSNR). La troisième contribution de la thèse est en lien avec la contribution 2 : l'algorithme de SISR basé sur la décomposition canonique polyadique des tenseurs est combiné avec une méthode d'estimation de la PSF, inconnues dans les applications pratiques. L'algorithme résultant effectue les deux tâche de manière alternée, et s'avère précis et rapide sur des données de simulation et expérimentales. La dernière contribution de la thèse a été d'évaluer l'intérêt d'un autre type de décomposition tensorielle, la décomposition de Tucker, dans le cadre d'un algorithme de SISR. Avant la déconvolution, le volume CBCT est débruité en tronquant sa décomposition de Tucker. Comparé à l'algorithme de la contribution 2, cette approche permet de diminuer encore plus le temps de calcul, d'un facteur 10, pour des performances similaires pour des SNR importants et légèrement supérieures pour de faibles SNR. Le lien entre cette méthode et les algorithmes 2D basés sur une SVD facilite le réglage des hyperparamètres comparé à la décomposition canonique polyadique.The resolution of dental cone beam computed tomography (CBCT) images is imited by detector geometry, sensitivity, patient movement, the reconstruction technique and the need to minimize radiation dose. The corresponding image degradation model assumes that the CBCT image is a blurred (with a point spread function, PSF), downsampled, noisy version of a high resolution image. The quality of the image is crucial for precise diagnosis and treatment planning. The methods proposed in this thesis aim to give a solution for the single image super-resolution (SISR) problem. The algorithms were evaluated on dental CBCT and corresponding highresolution (and high radiation-dose) µCT image pairs of extracted teeth. I have designed a deep learning framework for the SISR problem, applied to CBCT slices. I have tested the U-net and subpixel neural networks, which both improved the PSNR by 21-22 dB, and the Dice coe_cient of the canal segmentation by 1-2.2%, more significantly in the medically critical apical region. I have designed an algorithm for the 3D SISR problem, using the canonical polyadic decomposition of tensors. This implementation conserves the 3D structure of the volume, integrating the factorization-based denoising, deblurring with a known PSF, and upsampling of the image in a lightweight algorithm with a low number of parameters. It outperforms the state-of-the-art 3D reconstruction-based algorithms with two orders of magnitude faster run-time and provides similar PSNR (improvement of 1.2-1.5 dB) and segmentation metrics (Dice coe_cient increased on average to 0.89 and 0.90). Thesis II b: I have implemented a joint alternating recovery of the unknown PSF parameters and of the high-resolution 3D image using CPD-SISR. The algorithm was compared to a state-of-the-art 3D reconstruction-based algorithm, combined with the proposed alternating PSF-optimization. The two algorithms have shown similar improvement in PSNR, but CPD-SISR-blind converged roughly 40 times faster, under 6 minutes both in simulation and on experimental dental computed tomography data. I have proposed a solution for the 3D SISR problem using the Tucker decomposition (TD-SISR). The denoising step is realized _rst by TD in order to mitigate the ill-posedness of the subsequent deconvolution. Compared to CPDSISR the algorithm runs ten times faster. Depending on the amount of noise, higher PSNR (0.3 - 3.5 dB), SSI (0.58 - 2.43%) and segmentation values (Dice coefficient, 2% improvement) were measured. The parameters in TD-SISR are familiar from 2D SVD-based algorithms, so their tuning is easier compared to CPD-SISR
    • …
    corecore