579 research outputs found

    Relative Importance Sampling For Off-Policy Actor-Critic in Deep Reinforcement Learning

    Full text link
    Off-policy learning is more unstable compared to on-policy learning in reinforcement learning (RL). One reason for the instability of off-policy learning is a discrepancy between the target (π\pi) and behavior (b) policy distributions. The discrepancy between π\pi and b distributions can be alleviated by employing a smooth variant of the importance sampling (IS), such as the relative importance sampling (RIS). RIS has parameter β[0,1]\beta\in[0, 1] which controls smoothness. To cope with instability, we present the first relative importance sampling-off-policy actor-critic (RIS-Off-PAC) model-free algorithms in RL. In our method, the network yields a target policy (the actor), a value function (the critic) assessing the current policy (π\pi) using samples drawn from behavior policy. We use action value generated from the behavior policy in reward function to train our algorithm rather than from the target policy. We also use deep neural networks to train both actor and critic. We evaluated our algorithm on a number of Open AI Gym benchmark problems and demonstrate better or comparable performance to several state-of-the-art RL baselines

    Some models are useful, but how do we know which ones? Towards a unified Bayesian model taxonomy

    Full text link
    Probabilistic (Bayesian) modeling has experienced a surge of applications in almost all quantitative sciences and industrial areas. This development is driven by a combination of several factors, including better probabilistic estimation algorithms, flexible software, increased computing power, and a growing awareness of the benefits of probabilistic learning. However, a principled Bayesian model building workflow is far from complete and many challenges remain. To aid future research and applications of a principled Bayesian workflow, we ask and provide answers for what we perceive as two fundamental questions of Bayesian modeling, namely (a) "What actually is a Bayesian model?" and (b) "What makes a good Bayesian model?". As an answer to the first question, we propose the PAD model taxonomy that defines four basic kinds of Bayesian models, each representing some combination of the assumed joint distribution of all (known or unknown) variables (P), a posterior approximator (A), and training data (D). As an answer to the second question, we propose ten utility dimensions according to which we can evaluate Bayesian models holistically, namely, (1) causal consistency, (2) parameter recoverability, (3) predictive performance, (4) fairness, (5) structural faithfulness, (6) parsimony, (7) interpretability, (8) convergence, (9) estimation speed, and (10) robustness. Further, we propose two example utility decision trees that describe hierarchies and trade-offs between utilities depending on the inferential goals that drive model building and testing

    Learning an Approximate Model Predictive Controller with Guarantees

    Full text link
    A supervised learning framework is proposed to approximate a model predictive controller (MPC) with reduced computational complexity and guarantees on stability and constraint satisfaction. The framework can be used for a wide class of nonlinear systems. Any standard supervised learning technique (e.g. neural networks) can be employed to approximate the MPC from samples. In order to obtain closed-loop guarantees for the learned MPC, a robust MPC design is combined with statistical learning bounds. The MPC design ensures robustness to inaccurate inputs within given bounds, and Hoeffding's Inequality is used to validate that the learned MPC satisfies these bounds with high confidence. The result is a closed-loop statistical guarantee on stability and constraint satisfaction for the learned MPC. The proposed learning-based MPC framework is illustrated on a nonlinear benchmark problem, for which we learn a neural network controller with guarantees.Comment: 6 pages, 3 figures, to appear in IEEE Control Systems Letter

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models

    Full text link
    This work proposes ''jointly amortized neural approximation'' (JANA) of intractable likelihood functions and posterior densities arising in Bayesian surrogate modeling and simulation-based inference. We train three complementary networks in an end-to-end fashion: 1) a summary network to compress individual data points, sets, or time series into informative embedding vectors; 2) a posterior network to learn an amortized approximate posterior; and 3) a likelihood network to learn an amortized approximate likelihood. Their interaction opens a new route to amortized marginal likelihood and posterior predictive estimation -- two important ingredients of Bayesian workflows that are often too expensive for standard methods. We benchmark the fidelity of JANA on a variety of simulation models against state-of-the-art Bayesian methods and propose a powerful and interpretable diagnostic for joint calibration. In addition, we investigate the ability of recurrent likelihood networks to emulate complex time series models without resorting to hand-crafted summary statistics
    corecore