479 research outputs found

    The "MIND" Scalable PIM Architecture

    Get PDF
    MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer architecture for high performance computing and scalable embedded processing. It is a Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on each chip and supports global shared memory across systems of MIND components. MIND is distinguished from other PIM architectures in that it incorporates mechanisms for efficient support of a global parallel execution model based on the semantics of message-driven multithreaded split-transaction processing. MIND is designed to operate either in conjunction with other conventional microprocessors or in standalone arrays of like devices. It also incorporates mechanisms for fault tolerance, real time execution, and active power management. This paper describes the major elements and operational methods of the MIND architecture

    Investigate and classify various types of computer architecture

    Get PDF
    Issued as Final report, Project no. G-36-60

    Utilizing timing error detection and recovery to dynamically improve superscalar processor performance

    Get PDF
    To provide reliable execution, traditional design methodologies perform timing error avoidance. Worst case parameters are assumed when determining a processor\u27s operating frequency, allowing the maximum propagation delay through the system to be met. However, in practice the worst cases are rare, leading to a large amount of exploitable performance improvement if timing errors can be detected and recovered from. To this end, we propose a novel low cost scheme which allows a superscalar processor to dynamically tune its frequency past the worst case limit. When timing errors occur, they are detected and recovered from locally. Additionally, the number of errors that occur are monitored by one of several sampling methods. When the error rate becomes too high, leading to decreased performance, the frequency is scaled back. Experimental results show an average performance gain of 45% across all benchmark applications. The cost of implementing the error detection and recovery is kept modest by reusing the existing pipeline logic to detect the timing errors

    Spaceborne VHSIC multiprocessor system for AI applications

    Get PDF
    A multiprocessor system, under design for space-station applications, makes use of the latest generation symbolic processor and packaging technology. The result will be a compact, space-qualified system two to three orders of magnitude more powerful than present-day symbolic processing systems

    Concepts for on-board satellite image registration. Volume 3: Impact of VLSI/VHSIC on satellite on-board signal processing

    Get PDF
    Anticipated major advances in integrated circuit technology in the near future are described as well as their impact on satellite onboard signal processing systems. Dramatic improvements in chip density, speed, power consumption, and system reliability are expected from very large scale integration. Improvements are expected from very large scale integration enable more intelligence to be placed on remote sensing platforms in space, meeting the goals of NASA's information adaptive system concept, a major component of the NASA End-to-End Data System program. A forecast of VLSI technological advances is presented, including a description of the Defense Department's very high speed integrated circuit program, a seven-year research and development effort

    Wafer Scale Integration of Parallel Processors

    Get PDF

    Affordable techniques for dependable microprocessor design

    Get PDF
    As high computing power is available at an affordable cost, we rely on microprocessor-based systems for much greater variety of applications. This dependence indicates that a processor failure could have more diverse impacts on our daily lives. Therefore, dependability is becoming an increasingly important quality measure of microprocessors.;Temporary hardware malfunctions caused by unstable environmental conditions can lead the processor to an incorrect state. This is referred to as a transient error or soft error. Studies have shown that soft errors are the major source of system failures. This dissertation characterizes the soft error behavior on microprocessors and presents new microarchitectural approaches that can realize high dependability with low overhead.;Our fault injection studies using RISC processors have demonstrated that different functional blocks of the processor have distinct susceptibilities to soft errors. The error susceptibility information must be reflected in devising fault tolerance schemes for cost-sensitive applications. Considering the common use of on-chip caches in modern processors, we investigated area-efficient protection schemes for memory arrays. The idea of caching redundant information was exploited to optimize resource utilization for increased dependability. We also developed a mechanism to verify the integrity of data transfer from lower level memories to the primary caches. The results of this study show that by exploiting bus idle cycles and the information redundancy, an almost complete check for the initial memory data transfer is possible without incurring a performance penalty.;For protecting the processor\u27s control logic, which usually remains unprotected, we propose a low-cost reliability enhancement strategy. We classified control logic signals into static and dynamic control depending on their changeability, and applied various techniques including commit-time checking, signature caching, component-level duplication, and control flow monitoring. Our schemes can achieve more than 99% coverage with a very small hardware addition. Finally, a virtual duplex architecture for superscalar processors is presented. In this system-level approach, the processor pipeline is backed up by a partially replicated pipeline. The replication-based checker minimizes the design and verification overheads. For a large-scale superscalar processor, the proposed architecture can bring 61.4% reduction in die area while sustaining the maximum performance

    Control Caching : a fault-tolerant architecture for SEU mitigation in microprocessor control logic

    Get PDF
    The importance of fault tolerance at the processor architecture level has been made increasingly important due to rapid advancements in the design and usage of high performance devices and embedded processors. System level solutions to the challenge of fault tolerance flag errors and utilize penalty cycles to recover through the re-execution of instructions. This motivates the need for a hybrid technique providing fault detection as well as fault masking, with minimal penalty cycles for recovery from detected errors. In this research, we propose Control Caching, an architectural technique comprising of three schemes to protect the control logic of microprocessors against Single Event Upsets (SEUs). High fault coverage with relatively low hardware overhead is obtained by using both fault detection with recovery and fault masking. Control signals are classified as either static or dynamic, and static signals are further classified as opcode dependent and instruction dependent. The strategy for protecting static instruction dependent control signals utilizes a distributed cache of the history of the control bits along with the Triple Modular Redundancy (TMR) concept, while the opcode dependent control signals are protected by a distributed cache which can be used to flag errors. Dynamic signals are protected by selective duplication of datapath components. The techniques are implemented on the OpenRISC 1200 processor. Our simulation results show that fault detection with single cycle recovery is provided for 92% of all instruction executions. FPGA synthesis is performed to analyze the associated cycle time and area overheads

    Fault-Independent Test-Generation for Software-Based Self-Testing

    Get PDF
    Software-based self-test (SBST) is being widely used in both manufacturing and in-the-field testing of processor-based devices and Systems-on-Chips. Unfortunately, the stuck-at fault model is increasingly inadequate to match the new and different types of defects in the most recent semiconductor technologies, while the explicit and separate targeting of every fault model in SBST is cumbersome due to the high complexity of the test-generation process, the lack of automation tools, and the high CPU-intensity of the fault-simulation process. Moreover, defects in advanced semiconductor technologies are not always covered by the most commonly used fault-models, and the probability of defect-escapes increases even more. To overcome these shortcomings we propose the first fault-independent SBST method. The proposed method is almost fully automated, it offers high coverage of non-modeled faults by means of a novel SBST-oriented probabilistic metric, and it is very fast as it omits the time-consuming test-generation/fault-simulation processes. Extensive experiments on the OpenRISC OR1200 processor show the advantages of the proposed method
    • …
    corecore