320 research outputs found

    Quantum Search for Scaled Hash Function Preimages

    Get PDF
    We present the implementation of Grover's algorithm in a quantum simulator to perform a quantum search for preimages of two scaled hash functions, whose design only uses modular addition, word rotation, and bitwise exclusive or. Our implementation provides the means to assess with precision the scaling of the number of gates and depth of a full-fledged quantum circuit designed to find the preimages of a given hash digest. The detailed construction of the quantum oracle shows that the presence of AND gates, OR gates, shifts of bits and the reuse of the initial state along the computation, require extra quantum resources as compared with other hash functions based on modular additions, XOR gates and rotations. We also track the entanglement entropy present in the quantum register at every step along the computation, showing that it becomes maximal at the inner core of the first action of the quantum oracle, which implies that no classical simulation based on Tensor Networks would be of relevance. Finally, we show that strategies that suggest a shortcut based on sampling the quantum register after a few steps of Grover's algorithm can only provide some marginal practical advantage in terms of error mitigation.Comment: 24 pages, 14 figure

    Improvements to quantum search, with applications to cryptanalysis

    Get PDF

    Cryptanalysis against Symmetric-Key Schemes with Online Classical Queries and Offline Quantum Computations

    Get PDF
    In this paper, quantum attacks against symmetric-key schemes are presented in which adversaries only make classical queries but use quantum computers for offline computations. Our attacks are not as efficient as polynomial-time attacks making quantum superposition queries, while our attacks use the realistic model and overwhelmingly improve the classical attacks. Our attacks convert a type of classical meet-in-the-middle attacks into quantum ones. The attack cost depends on the number of available qubits and the way to realize the quantum hardware. The tradeoff between data complexity DD and time complexity TT against the problem of cardinality NN is D2T2=ND^2 \cdot T^2 =N and DT6=N3D \cdot T^6 = N^3 in the best and worst case scenarios to the adversary respectively, while the classic attack requires DT=ND\cdot T = N. This improvement is meaningful from an engineering aspect because several existing schemes claim beyond-birthday-bound security for TT by limiting the maximum DD to be below 2n/22^{n/2} according to the classical tradeoff DT=ND\cdot T = N. Those schemes are broken if quantum offline computations are performed by adversaries. The attack can be applied to many schemes such as a tweakable block-cipher construction TDR, a dedicated MAC scheme Chaskey, an on-line authenticated encryption scheme McOE-X, a hash function based MAC H2^2-MAC and a permutation based MAC keyed-sponge. The idea is then applied to the FX-construction to discover new tradeoffs in the classical query model

    Breaking Category Five SPHINCS+ with SHA-256

    Get PDF
    SPHINCS+^+ is a stateless hash-based signature scheme that has been selected for standardization as part of the NIST post-quantum cryptography (PQC) standardization process. Its security proof relies on the distinct-function multi-target second-preimage resistance (DM-SPR) of the underlying keyed hash function. The SPHINCS+^+ submission offered several instantiations of this keyed hash function, including one based on SHA-256. A recent observation by Sydney Antonov on the PQC mailing list demonstrated that the construction based on SHA-256 did not have DM-SPR at NIST category five, for several of the parameter sets submitted to NIST; however, it remained an open question whether this observation leads to a forgery attack. We answer this question in the affirmative by giving a complete forgery attack that reduces the concrete classical security of these parameter sets by approximately 40 bits of security. Our attack works by applying Antonov\u27s technique to the {WOTS+^+} public keys in {\SPHINCS}, leading to a new one-time key that can sign a very limited set of hash values. From that key, we construct a slightly altered version of the original hypertree with which we can sign arbitrary messages, yielding signatures that appear valid

    Constant-time verification for cut-and-choose-based signatures

    Get PDF
    In most post-quantum signature protocols, the verification procedure leaks information about which signature is being verified, and/or which public key is being used to verify the signature, to timing and other side-channel attacks. In some applications, this information leak is a breach of user privacy or system security. One class of signature protocols, based on the parallel composition of many runs of one or more interactive cut-and-choose protocols, can be modified to enable constant-time verification at low cost by fixing the multiset of challenges which will be chosen at the cut-and-choose step and randomizing only their order based on the hash of the input message. As a side benefit, this technique naturally makes the size and structure of signatures a fixed system parameter, even if the underlying cut-and-choose protocol has different response sizes for each possible challenge at the cut-and-choose step. When applied to a 5-pass “q2q2” interactive protocol, this technique requires essentially no extra rounds due to how fixed-weight binary vectors interact with the Kales--Zaverucha structural attack. Alternatively, when the data which must be transmitted for one of the two possible challenge values is significantly shorter than the other, or can be made so using standard and/or specialized compression techniques, a longer, lower-weight challenge vector can be used to obtain shorter signatures at the cost of more rounds of the underlying interactive protocol, with a much shallower computation-vs.-size tradeoff than the precomputation tree approach used in Picnic2, MUDFISH, and SUSHSYFISH. As an example, these techniques reduce MQDSS signatures to under 15 kB and PKP-DSS signatures to under 14 kB with NIST Category 1 security against both secret key recovery and signature forgery. Further improvements in design and parameters allow PKP-DSS signatures under 10 kB with a security level and performance acceptable for almost all interactive authentication. The asymptotic ROM proof of security published with MQDSS remains applicable to the optimized system, but the QROM proofs by Don et al. turn out to be invalid even for unmodified MQDSS

    Security analysis of NIST-LWC contest finalists

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringTraditional cryptographic standards are designed with a desktop and server environment in mind, so, with the relatively recent proliferation of small, resource constrained devices in the Internet of Things, sensor networks, embedded systems, and more, there has been a call for lightweight cryptographic standards with security, performance and resource requirements tailored for the highly-constrained environments these devices find themselves in. In 2015 the National Institute of Standards and Technology began a Standardization Process in order to select one or more Lightweight Cryptographic algorithms. Out of the original 57 submissions ten finalists remain, with ASCON and Romulus being among the most scrutinized out of them. In this dissertation I will introduce some concepts required for easy understanding of the body of work, do an up-to-date revision on the current situation on the standardization process from a security and performance standpoint, a description of ASCON and Romulus, and new best known analysis, and a comparison of the two, with their advantages, drawbacks, and unique traits.Os padrões criptográficos tradicionais foram elaborados com um ambiente de computador e servidor em mente. Com a proliferação de dispositivos de pequenas dimensões tanto na Internet of Things, redes de sensores e sistemas embutidos, apareceu uma necessidade para se definir padrões para algoritmos de criptografia leve, com prioridades de segurança, performance e gasto de recursos equilibrados para os ambientes altamente limitados em que estes dispositivos operam. Em 2015 o National Institute of Standards and Technology lançou um processo de estandardização com o objectivo de escolher um ou mais algoritmos de criptografia leve. Das cinquenta e sete candidaturas originais sobram apenas dez finalistas, sendo ASCON e Romulus dois desses finalistas mais examinados. Nesta dissertação irei introduzir alguns conceitos necessários para uma fácil compreensão do corpo deste trabalho, assim como uma revisão atualizada da situação atual do processo de estandardização de um ponto de vista tanto de segurança como de performance, uma descrição do ASCON e do Romulus assim como as suas melhores análises recentes e uma comparação entre os dois, frisando as suas vantagens, desvantagens e aspectos únicos

    Nostradamus goes Quantum

    Get PDF
    In the Nostradamus attack, introduced by Kelsey and Kohno (Eurocrypt 2006), the adversary has to commit to a hash value y of an iterated hash function H such that, when later given a message prefix P, the adversary is able to find a suitable suffix explanation S with H(P||S)=y. Kelsey and Kohno show a herding attack with 22n/32^{2n/3} evaluations of the compression function of H (with n bits output and state), locating the attack between preimage attacks and collision search in terms of complexity. Here we investigate the security of Nostradamus attacks for quantum adversaries. We present a quantum herding algorithm for the Nostradamus problem making approximately n323n/7\sqrt[3]{n}\cdot 2^{3n/7} compression function evaluations, significantly improving over the classical bound. We also prove that quantum herding attacks cannot do better than 23n/72^{3n/7} evaluations for random compression functions, showing that our algorithm is (essentially) optimal. We also discuss a slightly less tight bound of roughly 23n/7s2^{3n/7-s} for general Nostradamus attacks against random compression functions, where s is the maximal block length of the adversarially chosen suffix S
    corecore