2,817 research outputs found

    xUnit: Learning a Spatial Activation Function for Efficient Image Restoration

    Full text link
    In recent years, deep neural networks (DNNs) achieved unprecedented performance in many low-level vision tasks. However, state-of-the-art results are typically achieved by very deep networks, which can reach tens of layers with tens of millions of parameters. To make DNNs implementable on platforms with limited resources, it is necessary to weaken the tradeoff between performance and efficiency. In this paper, we propose a new activation unit, which is particularly suitable for image restoration problems. In contrast to the widespread per-pixel activation units, like ReLUs and sigmoids, our unit implements a learnable nonlinear function with spatial connections. This enables the net to capture much more complex features, thus requiring a significantly smaller number of layers in order to reach the same performance. We illustrate the effectiveness of our units through experiments with state-of-the-art nets for denoising, de-raining, and super resolution, which are already considered to be very small. With our approach, we are able to further reduce these models by nearly 50% without incurring any degradation in performance.Comment: Conference on Computer Vision and Pattern Recognition (CVPR), 201

    A Theoretically Guaranteed Deep Optimization Framework for Robust Compressive Sensing MRI

    Full text link
    Magnetic Resonance Imaging (MRI) is one of the most dynamic and safe imaging techniques available for clinical applications. However, the rather slow speed of MRI acquisitions limits the patient throughput and potential indi cations. Compressive Sensing (CS) has proven to be an efficient technique for accelerating MRI acquisition. The most widely used CS-MRI model, founded on the premise of reconstructing an image from an incompletely filled k-space, leads to an ill-posed inverse problem. In the past years, lots of efforts have been made to efficiently optimize the CS-MRI model. Inspired by deep learning techniques, some preliminary works have tried to incorporate deep architectures into CS-MRI process. Unfortunately, the convergence issues (due to the experience-based networks) and the robustness (i.e., lack real-world noise modeling) of these deeply trained optimization methods are still missing. In this work, we develop a new paradigm to integrate designed numerical solvers and the data-driven architectures for CS-MRI. By introducing an optimal condition checking mechanism, we can successfully prove the convergence of our established deep CS-MRI optimization scheme. Furthermore, we explicitly formulate the Rician noise distributions within our framework and obtain an extended CS-MRI network to handle the real-world nosies in the MRI process. Extensive experimental results verify that the proposed paradigm outperforms the existing state-of-the-art techniques both in reconstruction accuracy and efficiency as well as robustness to noises in real scene

    A Survey on Bayesian Deep Learning

    Full text link
    A comprehensive artificial intelligence system needs to not only perceive the environment with different `senses' (e.g., seeing and hearing) but also infer the world's conditional (or even causal) relations and corresponding uncertainty. The past decade has seen major advances in many perception tasks such as visual object recognition and speech recognition using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. In recent years, Bayesian deep learning has emerged as a unified probabilistic framework to tightly integrate deep learning and Bayesian models. In this general framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in turn, the feedback from the inference process is able to enhance the perception of text or images. This survey provides a comprehensive introduction to Bayesian deep learning and reviews its recent applications on recommender systems, topic models, control, etc. Besides, we also discuss the relationship and differences between Bayesian deep learning and other related topics such as Bayesian treatment of neural networks.Comment: To appear in ACM Computing Surveys (CSUR) 202

    Hybrid Spectral Denoising Transformer with Guided Attention

    Full text link
    In this paper, we present a Hybrid Spectral Denoising Transformer (HSDT) for hyperspectral image denoising. Challenges in adapting transformer for HSI arise from the capabilities to tackle existing limitations of CNN-based methods in capturing the global and local spatial-spectral correlations while maintaining efficiency and flexibility. To address these issues, we introduce a hybrid approach that combines the advantages of both models with a Spatial-Spectral Separable Convolution (S3Conv), Guided Spectral Self-Attention (GSSA), and Self-Modulated Feed-Forward Network (SM-FFN). Our S3Conv works as a lightweight alternative to 3D convolution, which extracts more spatial-spectral correlated features while keeping the flexibility to tackle HSIs with an arbitrary number of bands. These features are then adaptively processed by GSSA which per-forms 3D self-attention across the spectral bands, guided by a set of learnable queries that encode the spectral signatures. This not only enriches our model with powerful capabilities for identifying global spectral correlations but also maintains linear complexity. Moreover, our SM-FFN proposes the self-modulation that intensifies the activations of more informative regions, which further strengthens the aggregated features. Extensive experiments are conducted on various datasets under both simulated and real-world noise, and it shows that our HSDT significantly outperforms the existing state-of-the-art methods while maintaining low computational overhead. Code is at https: //github.com/Zeqiang-Lai/HSDT.Comment: ICCV 202
    • …
    corecore