19 research outputs found

    Accelerated filtering on graphs using Lanczos method

    Get PDF
    Signal-processing on graphs has developed into a very active field of research during the last decade. In particular, the number of applications using frames constructed from graphs, like wavelets on graphs, has substantially increased. To attain scalability for large graphs, fast graph-signal filtering techniques are needed. In this contribution, we propose an accelerated algorithm based on the Lanczos method that adapts to the Laplacian spectrum without explicitly computing it. The result is an accurate, robust, scalable and efficient algorithm. Compared to existing methods based on Chebyshev polynomials, our solution achieves higher accuracy without increasing the overall complexity significantly. Furthermore, it is particularly well suited for graphs with large spectral gaps

    Fast computation of spectral projectors of banded matrices

    Full text link
    We consider the approximate computation of spectral projectors for symmetric banded matrices. While this problem has received considerable attention, especially in the context of linear scaling electronic structure methods, the presence of small relative spectral gaps challenges existing methods based on approximate sparsity. In this work, we show how a data-sparse approximation based on hierarchical matrices can be used to overcome this problem. We prove a priori bounds on the approximation error and propose a fast algo- rithm based on the QDWH algorithm, along the works by Nakatsukasa et al. Numerical experiments demonstrate that the performance of our algorithm is robust with respect to the spectral gap. A preliminary Matlab implementation becomes faster than eig already for matrix sizes of a few thousand.Comment: 27 pages, 10 figure

    A Householder-based algorithm for Hessenberg-triangular reduction

    Full text link
    The QZ algorithm for computing eigenvalues and eigenvectors of a matrix pencil A−λBA - \lambda B requires that the matrices first be reduced to Hessenberg-triangular (HT) form. The current method of choice for HT reduction relies entirely on Givens rotations regrouped and accumulated into small dense matrices which are subsequently applied using matrix multiplication routines. A non-vanishing fraction of the total flop count must nevertheless still be performed as sequences of overlapping Givens rotations alternately applied from the left and from the right. The many data dependencies associated with this computational pattern leads to inefficient use of the processor and poor scalability. In this paper, we therefore introduce a fundamentally different approach that relies entirely on (large) Householder reflectors partially accumulated into block reflectors, by using (compact) WY representations. Even though the new algorithm requires more floating point operations than the state of the art algorithm, extensive experiments on both real and synthetic data indicate that it is still competitive, even in a sequential setting. The new algorithm is conjectured to have better parallel scalability, an idea which is partially supported by early small-scale experiments using multi-threaded BLAS. The design and evaluation of a parallel formulation is future work

    Computing Functions of Symmetric Hierarchically Semiseparable Matrices

    Full text link
    The aim of this work is to develop a fast algorithm for approximating the matrix function f(A)f(A) of a square matrix AA that is symmetric and has hierarchically semiseparable (HSS) structure. Appearing in a wide variety of applications, often in the context of discretized (fractional) differential and integral operators, HSS matrices have a number of attractive properties facilitating the development of fast algorithms. In this work, we use an unconventional telescopic decomposition of AA, inspired by recent work of Levitt and Martinsson on approximating an HSS matrix from matrix-vector products with a few random vectors. This telescopic decomposition allows us to approximate f(A)f(A) by recursively performing low-rank updates with rational Krylov subspaces while keeping the size of the matrices involved in the rational Krylov subspaces small. In particular, no large-scale linear system needs to be solved, which yields favorable complexity estimates and reduced execution times compared to existing methods, including an existing divide-and-conquer strategy. The advantages of our newly proposed algorithms are demonstrated for a number of examples from the literature, featuring the exponential, the inverse square root, and the sign function of a matrix. Even for matrix inversion, our algorithm exhibits superior performance, even if not specifically designed for this task
    corecore