6,756 research outputs found

    On-board processing satellite network architecture and control study

    Get PDF
    The market for telecommunications services needs to be segmented into user classes having similar transmission requirements and hence similar network architectures. Use of the following transmission architecture was considered: satellite switched TDMA; TDMA up, TDM down; scanning (hopping) beam TDMA; FDMA up, TDM down; satellite switched MF/TDMA; and switching Hub earth stations with double hop transmission. A candidate network architecture will be selected that: comprises multiple access subnetworks optimized for each user; interconnects the subnetworks by means of a baseband processor; and optimizes the marriage of interconnection and access techniques. An overall network control architecture will be provided that will serve the needs of the baseband and satellite switched RF interconnected subnetworks. The results of the studies shall be used to identify elements of network architecture and control that require the greatest degree of technology development to realize an operational system. This will be specified in terms of: requirements of the enabling technology; difference from the current available technology; and estimate of the development requirements needed to achieve an operational system. The results obtained for each of these tasks are presented

    Low-Power Heterogeneous Graphene Nanoribbon-CMOS Multistate Volatile Memory Circuit

    Get PDF
    Graphene is an emerging nanomaterial believed to be a potential candidate for post-Si nanoelectronics, due to its exotic properties. Recently, a new graphene nanoribbon crossbar (xGNR) device was proposed which exhibits negative differential resistance (NDR). In this paper, a multi-state memory design is presented that can store multiple bits in a single cell enabled by this xGNR device, called Graphene Nanoribbon Tunneling Random Access Memory (GNTRAM). An approach to increase the number of bits per cell is explored alternative to physical scaling to overcome CMOS SRAM limitations. A comprehensive design for quaternary GNTRAM is presented as a baseline, implemented with a heterogeneous integration between graphene and CMOS. Sources of leakage and approaches to mitigate them are investigated. This design is extensively benchmarked against 16nm CMOS SRAMs and 3T DRAM. The proposed quaternary cell shows up to 2.27x density benefit vs. 16nm CMOS SRAMs and 1.8x vs. 3T DRAM. It has comparable read performance and is power-efficient, up to 1.32x during active period and 818x during stand-by against high performance SRAMs. Multi-state GNTRAM has the potential to realize high-density low-power nanoscale embedded memories. Further improvements may be possible by using graphene more extensively, as graphene transistors become available in future

    Beyond Moore's technologies: operation principles of a superconductor alternative

    Full text link
    The predictions of Moore's law are considered by experts to be valid until 2020 giving rise to "post-Moore's" technologies afterwards. Energy efficiency is one of the major challenges in high-performance computing that should be answered. Superconductor digital technology is a promising post-Moore's alternative for the development of supercomputers. In this paper, we consider operation principles of an energy-efficient superconductor logic and memory circuits with a short retrospective review of their evolution. We analyze their shortcomings in respect to computer circuits design. Possible ways of further research are outlined.Comment: OPEN ACCES

    On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    Get PDF
    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices
    corecore