6 research outputs found

    Opportunities of E - Learning Adapting Mobile and Cloud Computing Techniques

    Get PDF
    This study mainly focused on the application of cloud computing and mobile computing in the E-learning environment. The popularity of learning of the internet, the construction of perfect web-based learning environment has become one of the hot points on researching remote education. Cloud computing is growing rapidly, with applications in almost any area, including education. E-Learning systems usually require many hardware and software resources. There are many education institutions that cannot afford such investments, and cloud computing is the best solution. This paper presents the benefits of E-Learning based on mobile computing and learning with mobile application using cloud environment and the benefits in several sectors, especially in the area of learning. The performance and features are evaluated that can expect from the use of cloud based application on a mobile device, and the effects it will have on the device that runs

    Feasibility of Implementing Multi-factor Authentication Schemes in Mobile Cloud Computing

    Get PDF
    Abstract-Mobile cloud computing is a new computing technology, which provides on-demand resources. Nowadays, this computing paradigm is becoming one the most interesting technology for IT enterprises. The idea of computing and offloading data in cloud computing is utilized to overcome the inherent challenges in mobile computing. This is carried out by utilizing other resource providers besides the mobile device to host the delivery of mobile applications. However, this technology introduces some opportunities as new computing concept, several challenges, including security and privacy are raised from the adoption of this IT paradigm. Authentication plays an important role to mitigate security and privacy issue in the mobile cloud computing. Even some authentication algorithms are proposed for mobile cloud computing, but most of these algorithms designed for traditional computing models, and are not using cloud capabilities. In mobile cloud computing, we access to pooled computation resources and applying more complicated authentication schemes is possible. Using different authentication factors, which is called multifactor authentication algorithms, has been proposed for various areas. In this paper, feasibility of implementation of different kinds of multi-factor authentication protocols are discussed. Furthermore, the security and privacy of these algorithms are analyzed. Finally, some future directions are recommended

    How do different devices impact users' web browsing experience?

    Get PDF
    The digital world presents many interfaces, among which the desktop and mobile device platforms are dominant. Grasping the differential user experience (UX) on these devices is a critical requirement for developing user focused interfaces that can deliver enhanced satisfaction. This study specifically focuses on the user's web browsing experience while using desktop and mobile. The thesis adopts quantitative methodology. This amalgamation presents a comprehensive understanding of the influence of device specific variables, such as loading speed, security concerns and interaction techniques, which are critically analyzed. Moreover, various UX facets including usability, user interface (UI) design, accessibility, content organization, and user satisfaction on both devices were also discussed. Substantial differences are observed in the UX delivered by desktop and mobile devices, dictated by inherent device attributes and user behaviors. Mobile UX is often associated with personal, context sensitive use, while desktop caters more effectively to intensive, extended sessions. A surprising revelation is the existing discrepancy between the increasing popularity of mobile devices and the persistent inability of many websites and applications to provide a satisfactory mobile UX. This issue primarily arises from the ineffective adaptation of desktop-focused designs to the mobile, underscoring the necessity for distinct, device specific strategies in UI development. By furnishing pragmatic strategies for designing efficient, user-friendly and inclusive digital interfaces for both devices; the thesis contributes significantly to the existing body of literature. An emphasis is placed on a device-neutral approach in UX design, taking into consideration the unique capabilities and constraints of each device, thereby enriching the expanding discourse on multiservice user experience. As well as this study contributes to digital marketing and targe­ted advertising perspe­ctives

    How do different devices impact users' web browsing experience?

    Get PDF
    The digital world presents many interfaces, among which the desktop and mobile device platforms are dominant. Grasping the differential user experience (UX) on these devices is a critical requirement for developing user focused interfaces that can deliver enhanced satisfaction. This study specifically focuses on the user's web browsing experience while using desktop and mobile. The thesis adopts quantitative methodology. This amalgamation presents a comprehensive understanding of the influence of device specific variables, such as loading speed, security concerns and interaction techniques, which are critically analyzed. Moreover, various UX facets including usability, user interface (UI) design, accessibility, content organization, and user satisfaction on both devices were also discussed. Substantial differences are observed in the UX delivered by desktop and mobile devices, dictated by inherent device attributes and user behaviors. Mobile UX is often associated with personal, context sensitive use, while desktop caters more effectively to intensive, extended sessions. A surprising revelation is the existing discrepancy between the increasing popularity of mobile devices and the persistent inability of many websites and applications to provide a satisfactory mobile UX. This issue primarily arises from the ineffective adaptation of desktop-focused designs to the mobile, underscoring the necessity for distinct, device specific strategies in UI development. By furnishing pragmatic strategies for designing efficient, user-friendly and inclusive digital interfaces for both devices; the thesis contributes significantly to the existing body of literature. An emphasis is placed on a device-neutral approach in UX design, taking into consideration the unique capabilities and constraints of each device, thereby enriching the expanding discourse on multiservice user experience. As well as this study contributes to digital marketing and targe­ted advertising perspe­ctives

    Low power techniques and architectures for multicarrier wireless receivers

    Get PDF

    Energy efficient hardware acceleration of multimedia processing tools

    Get PDF
    The world of mobile devices is experiencing an ongoing trend of feature enhancement and generalpurpose multimedia platform convergence. This trend poses many grand challenges, the most pressing being their limited battery life as a consequence of delivering computationally demanding features. The envisaged mobile application features can be considered to be accelerated by a set of underpinning hardware blocks Based on the survey that this thesis presents on modem video compression standards and their associated enabling technologies, it is concluded that tight energy and throughput constraints can still be effectively tackled at algorithmic level in order to design re-usable optimised hardware acceleration cores. To prove these conclusions, the work m this thesis is focused on two of the basic enabling technologies that support mobile video applications, namely the Shape Adaptive Discrete Cosine Transform (SA-DCT) and its inverse, the SA-IDCT. The hardware architectures presented in this work have been designed with energy efficiency in mind. This goal is achieved by employing high level techniques such as redundant computation elimination, parallelism and low switching computation structures. Both architectures compare favourably against the relevant pnor art in the literature. The SA-DCT/IDCT technologies are instances of a more general computation - namely, both are Constant Matrix Multiplication (CMM) operations. Thus, this thesis also proposes an algorithm for the efficient hardware design of any general CMM-based enabling technology. The proposed algorithm leverages the effective solution search capability of genetic programming. A bonus feature of the proposed modelling approach is that it is further amenable to hardware acceleration. Another bonus feature is an early exit mechanism that achieves large search space reductions .Results show an improvement on state of the art algorithms with future potential for even greater savings
    corecore