1,082 research outputs found

    Threshold Implementations of the Present Cipher

    Get PDF
    The process of securing data has always been a challenge since it is related to the safety of people and society. Nowadays, there are many cryptographic algorithms developed to solve security problems. However, some applications have constraints which make it difficult to achieve high levels of security. Light weight cryptography aims to address this issue while trying to maintain low costs. Side-channel attacks have changed the way of cryptography significantly. In this kind of attacks, the attacker has physical access to the crypto-system and can extract the sensitive data by monitoring and measuring the side-channels such as power consumption, electromagnetic emanation, timing information, sound, etc. These attacks are based on the relationship between side-channels and secret data. Therefore, there need to be countermeasures to eliminate or reduce side channel leaks or to break the relationship between side-channels and secret data to protect the crypto systems against side-channel attacks. In this work, we explore the practicality of Threshold Implementation (TI) with only two shares for a smaller design that needs less randomness but is still leakage resistant. We demonstrate the first two-share Threshold Implementations of light-weight block cipher Present. Based on implementation results, two-share TI has a lower area overhead and better throughput when compared with a first-order resistant three-share scheme. Leakage analysis of the developed implementations reveals that two-share TI can retain perfect first-order resistance. However, the analysis also exposes a strong second-order leakage

    Design of a Scan Chain for Side Channel Attacks on AES Cryptosystem for Improved Security

    Get PDF
    Scan chain-based attacks are side-channel attacks focusing on one of the most significant features of hardware test circuitry. A technique called Design for Testability (DfT) involves integrating certain testability components into a hardware design. However, this creates a side channel for cryptanalysis, providing crypto devices vulnerable to scan-based attacks. Advanced Encryption Standard (AES) has been proven as the most powerful and secure symmetric encryption algorithm announced by USA Government and it outperforms all other existing cryptographic algorithms. Furthermore, the on-chip implementation of private key algorithms like AES has faced scan-based side-channel attacks. With the aim of protecting the data for secure communication, a new hybrid pipelined AES algorithm with enhanced security features is implemented. This paper proposes testing an AES core with unpredictable response compaction and bit level-masking throughout the scan chain process. A bit-level scan flipflop focused on masking as a scan protection solution for secure testing. The experimental results show that the best security is provided by the randomized addition of masked scan flipflop through the scan chain and also provides minimal design difficulty and power expansion overhead with some negligible delay measures. Thus, the proposed technique outperforms the state-of-the-art LUT-based S-box and the composite sub-byte transformation model regarding throughput rate 2 times and 15 times respectively. And security measured in the avalanche effect for the sub-pipelined model has been increased up to 95 per cent with reduced computational complexity. Also, the proposed sub-pipelined S-box utilizing a composite field arithmetic scheme achieves 7 per cent area effectiveness and 2.5 times the hardware complexity compared to the LUT-based model

    Explointing FPGA block memories for protected cryptographic implementations

    Get PDF
    Modern Field Programmable Gate Arrays (FPGAs) are power packed with features to facilitate designers. Availability of features like huge block memory (BRAM), Digital Signal Processing (DSP) cores, embedded CPU makes the design strategy of FPGAs quite different from ASICs. FPGA are also widely used in security-critical application where protection against known attacks is of prime importance. We focus ourselves on physical attacks which target physical implementations. To design countermeasures against such attacks, the strategy for FPGA designers should also be different from that in ASIC. The available features should be exploited to design compact and strong countermeasures. In this paper, we propose methods to exploit the BRAMs in FPGAs for designing compact countermeasures. BRAM can be used to optimize intrinsic countermeasures like masking and dual-rail logic, which otherwise have significant overhead (at least 2X). The optimizations are applied on a real AES-128 co-processor and tested for area overhead and resistance on Xilinx Virtex-5 chips. The presented masking countermeasure has an overhead of only 16% when applied on AES. Moreover Dual-rail Precharge Logic (DPL) countermeasure has been optimized to pack the whole sequential part in the BRAM, hence enhancing the security. Proper robustness evaluations are conducted to analyze the optimization for area and security

    BlackJack: Secure machine learning on IoT devices through hardware-based shuffling

    Full text link
    Neural networks are seeing increased use in diverse Internet of Things (IoT) applications such as healthcare, smart homes and industrial monitoring. Their widespread use makes neural networks a lucrative target for theft. An attacker can obtain a model without having access to the training data or incurring the cost of training. Also, networks trained using private data (e.g., medical records) can reveal information about this data. Networks can be stolen by leveraging side channels such as power traces of the IoT device when it is running the network. Existing attacks require operations to occur in the same order each time; an attacker must collect and analyze several traces of the device to steal the network. Therefore, to prevent this type of attack, we randomly shuffle the order of operations each time. With shuffling, each operation can now happen at many different points in each execution, making the attack intractable. However, we show that shuffling in software can leak information which can be used to subvert this solution. Therefore, to perform secure shuffling and reduce latency, we present BlackJack, hardware added as a functional unit within the CPU. BlackJack secures neural networks on IoT devices by increasing the time needed for an attack to centuries, while adding just 2.46% area, 3.28% power and 0.56% latency overhead on an ARM M0+ SoC.Comment: 16 pages, 6 figure

    Multi-Tenant Cloud FPGA: A Survey on Security

    Full text link
    With the exponentially increasing demand for performance and scalability in cloud applications and systems, data center architectures evolved to integrate heterogeneous computing fabrics that leverage CPUs, GPUs, and FPGAs. FPGAs differ from traditional processing platforms such as CPUs and GPUs in that they are reconfigurable at run-time, providing increased and customized performance, flexibility, and acceleration. FPGAs can perform large-scale search optimization, acceleration, and signal processing tasks compared with power, latency, and processing speed. Many public cloud provider giants, including Amazon, Huawei, Microsoft, Alibaba, etc., have already started integrating FPGA-based cloud acceleration services. While FPGAs in cloud applications enable customized acceleration with low power consumption, it also incurs new security challenges that still need to be reviewed. Allowing cloud users to reconfigure the hardware design after deployment could open the backdoors for malicious attackers, potentially putting the cloud platform at risk. Considering security risks, public cloud providers still don't offer multi-tenant FPGA services. This paper analyzes the security concerns of multi-tenant cloud FPGAs, gives a thorough description of the security problems associated with them, and discusses upcoming future challenges in this field of study
    corecore