
Exploiting FPGA Block Memories for Protected
Cryptographic Implementations
Shivam Bhasin , Wei He , Sylvain Guilley and Jean-Luc Danger

Abstract—Modern Field Programmable Gate Arrays (FPGAs)
are power packed with features to facilitate designers. Availability
of features like huge block memory (BRAM), Digital Signal Pro­
cessing (DSP) cores, embedded CPU makes the design strategy of
FPGAs quite different from ASICs. FPGA are also widely used
in security-critical application where protection against known
attacks is of prime importance. We focus ourselves on physical
attacks which target physical implementations. To design counter-
measures against such attacks, the strategy for FPGA designers
should also be different from that in ASIC. The available features
should be exploited to design compact and strong countermea-
sures. In this paper, we propose methods to exploit the BRAMs
in FPGAs for designing compact countermeasures. BRAM can
be used to optimize intrinsic countermeasures like masking and
dual-rail logic, which otherwise have significant overhead (at
least 2X). The optimizations are applied on a real AES-128 co­
processor and tested for area overhead and resistance on Xilinx
Virtex-5 chips. The presented masking countermeasure has an
overhead of only 16% when applied on AES. Moreover Dual-rail
Precharge Logic (DPL) countermeasure has been optimized to
pack the whole sequential part in the BRAM, hence enhancing the
security. Proper robustness evaluations are conducted to analyze
the optimization for area and security.

Keywords: FPGA, Side-Channel Analysis, Block Memo­
ries, Countermeasures.

I. INTRODUCTION

Security is now one of the major driving factors of semi­
conductor industry. Often there is a need to secure the whole
system-on-chip (SoC), which generally is achieved by em­
bedded cryptographic cores (crypto-cores). Depending on the
application, these crypto-cores are used to encrypt/decrypt
sensitive data in all parts of the system, ranging from memory
content to system-bus. A major threat known as "Side-Channel
Attacks" (SCA []) has been pointed out about 17 years ago,
but curiously the design of solid and efficient protections
is still an open research area. SCA generally exploits the
unintentional leakages from the physical implementation of the
crypto-cores. This brings into play countermeasures to protect
the physical implementation of cryptography, which can be
classed into intrinsic and extrinsic countermeasures. Extrinsic
countermeasures are applied in parallel to crypto-cores in order
to confuse the attacker. Countermeasures involving generation

of noise, misalignment of activity generally fall in this cate­
gory [2].

Although extrinsic countermeasures have a limited over­
head, their resistance depends on the power of the attacker.
Consider a noise generator which is deployed to provide 2x
SCA resistance than the unprotected crypto-core. The power of
the countermeasure is related to the extra effort required by the
attacker to acquire twice the number of traces. If the attacker
needs only a couple of seconds more to acquire the extra
traces, then the security enhancement is negligible. Therefore
a common practice is to combine several extrinsic countermea­
sures with protocol level countermeasures. However provable
security is not assured.

Intrinsic countermeasures are the other solution which,
as the name suggests, are built into the algorithm. These
countermeasures modify the implementation of the cipher in
order to leak little or no sensitive information in the side
channel. Also these countermeasures often come with a non-
negligible overhead. Intrinsic countermeasures further fall into
two wide categories, i.e., masking and hiding.

Hiding countermeasures generally comprise of dual-rail
precharge logic (DPL [;]). DPL is a circuit-level countermea­
sure which aims at flattening or removing the data-dependent
leakage from the circuit. Removal of data-dependant leakage
is achieved by putting in place a generated False (F) rail
that works simultaneously together with the original True (T)
rail for compensating each other's activity. DPL operates in
two phases: Precharge, i.e., where all the values are reset
to a constant value, and Evaluation, where the cryptographic
computation is performed. The two-phase operation with a
dual-rail structure (theoretically) ensures constant activity and
is therefore free from any exploitable data-dependent leakage.

Masking on the other hand is generally applied at the
algorithmic level. The basic idea of masking is to protect
all the sensitive intermediate values inside a cryptographic
algorithm by applying a random mask [4]. The random mask
is removed at the end, which involves complex computation
on the value of mask, generally done by implementing the
masked path in parallel to the actual algorithm. The linear

operations of a cryptographic algorithm can be easily tuned
to masking. Masking the non-linear operations is not an easy
task, as the overhead associated with it is exponential.

For a secure implementation, DPL needs balanced place­
ment and routing of its component. Masking does not have
such strict requirements at the circuit level but the non-linear
operation is often hard to be realized in a secure manner.
The availability of high-density block memories (BRAMs)
in FPGA can help to solve both problems. BRAMs are
capable of storing huge tables, which are often present in the
non-linear part of protected ciphers (e.g., masked/ dual-rail
Sbox). Thus intrinsic countermeasures become realizable in
FPGA due to BRAMs. Several other features (discussed in
Sect. II-A) are present in BRAMs which can be exploited to
optimize the implementation of the cipher. BRAMs are also
known to provide elevated security as compared to its logic
counterpart [5], and are often recommended to implement
intrinsic countermeasures. BRAM are also largely deployed
in implementing hash function and other cryptographic appli­
cations.

In this paper, we concentrate on BRAMs present in FPGAs
in the context of intrinsic countermeasures. In particular,
we propose methods to efficiently use BRAM to implement
countermeasures with reduced area overhead and higher SCA
resistance. Although generic countermeasure are favourable,
it as well makes sense to exploit new features to realize
compact and robust countermeasure. Firstly, we propose a
method to exploit the features of BRAM in-order to implement
masking and DPL countermeasures with limited overhead. The
proposed optimizations are applied on a real AES-128 co­
processor. All the AES implementations tested implement the
sboxes in BRAMs, as this configuration has been shown to
offer enhanced resistance against SCA [5]. Next we analyze
the security of these countermeasures in the presence of
BRAM. We show that it is possible to use modern FPGA
features to effectively implement intrinsic countermeasures.

The rest of the paper is organized as follows: Sect. I I gives
general background on BRAM architecture in FPGA, its appli­
cation in masking and DPL countermeasures. Next in Sect. I I I ,
we propose two methodologies to exploit BRAM features
in an FPGA to optimize masking and DPL countermeasures
respectively. The proposed optimization are applied on an
AES-128 co-processor for experimental validation. The SCA
evaluation of proposed protection methodologies is discussed
in Sect. IV. Finally, Sect. V draws general conclusion.

I I . B R A M IN CRYPTOGRAPHIC APPLICATIONS

In this section, we first discuss the features of an FPGA
BRAM. A special focus is laid on the application of these
features to optimize SCA countermeasures. Thereafter a gen­
eral background of the used countermeasures, i.e., Masking
and DPL are provided.

A. Block RAM in Modern FPGA
Modern FPGAs possess huge blocks of memories which

are synchronous in nature. For example, the latest Xilinx FP-

Address
Datain

Input
Register

>
Memory
Array

D Q
Latch

n
WE _
EN —

Output
Register

Datdout

Fig. 1. Internal Architecture of Xilinx B R A M .

T A B L E I
FEATURES OF A X I L I N X B R A M . I N THE TABLE, 1 SIGNIFIES AN
IMPROVEMENT I N AREA OR PERFORMANCE AND 2 SIGNIFIES AN

IMPROVEMENT I N S C A RESISTANCE.

BRAM Feature
High Density RAM

Internal Register at input

Dual-Port Nature

Output Register

Reset

Hard Macro in ≤ 65nm CMOS

Application to Cryptography
To implement huge data1

To implement state register1

Not connected to FPGA routing2

No glitches2

Single block for multiple Sboxes1

Available resource1

To achieve better timing2

To enable precharge propagation in DPL1,2

Low leakage power2

To balance placement1,2

GAs have several blocks of 36Kbits true dual-port memories.
The exact design of these BRAMs is not public but a few
details about the general architecture of these BRAMs are
documented [] . Fig. 1 shows one port of a dual-port BRAM
in Spartan-6 FPGA. It can be deduced from the figure that the
BRAM contains register to synchronize input data and address
before accessing the memory array. The memory array is
followed by a latch and an optional output register. BRAM also
contains several signals to control the use of output register
or set/reset the value of the latch and output register. Altera
AltSyncRam [7] also possess a similar BRAM architecture.
Therefore the presented solution can also be extended to Altera
FPGAs.

As previously stated, BRAMs are recommended for crypto-
applications. Tab. I summarizes the features of a BRAM and
their use in relation to cryptographic applications.

Some of these options have already been used in crypto­
graphic applications. Internal Register at input for state and
Dual-Port Nature was first used by Drimer et al. in [] . Reset
in the BRAM was also used in Separated Dynamic Differential
Logic (SDDL [5]) to enable precharge propagation. In [9],
authors have shown that the internal register at input (address)
of BRAM leaks very less and difficult to attack. Moreover, we
assume that it is very unlikely to seperate activities of the two
ports of a BRAM being a hard-macro in < 65nm CMOS.

B. Masking and the use of BRAM
Masking relies on variable representation of sensitive data

into randomized shares [10]. A dth-order masking scheme
splits a sensitive variable Z G F ™ into d + 1 random shares,
noted S = (£¿)¿e[o,<¡], in such a way that the relation
So -L • • • -L Sd = Z is satisfied for a group operation _L (e.g.,
the XOR operation in Boolean masking). For a simple Boolean

Read
Enable

Write Latch
Enable Enable

Controller

masking scheme, order d = 1. When masking is implemented
in hardware, generally the mask as well as the masked data
are computed in parallel. Keeping this detail in mind, the
leakage function for the first-order masking countermeasure
in hardware can be expressed as:

L = HW(Z © M) + HW(M) + N (1)

The share M is the random mask uniformly distributed over
F!? and the share Z © M is the masked variable. Variables Z
and M are assumed to be mutually independent. The linear
parts of the cipher are easier to be masked but the computation
of non-linear Sbox S in presence of masking is difficult.
It involves computing S(Z) © M' from the variables M,
Z © M and M' (new mask) without compromising with SCA
resistance.

To deal with this problem, one of the most common
solutions is the Generalized Look-Up Table (GLUT [11]).
The main idea of GLUT is to precompute a look-up table,
associated to the function S" : (X, Y, Y') i->- S(X © Y) © Y'.
To compute the masked variable S(Z) © M', GLUT performs
a table look-up of GLUT[Z © M,M,M']. Thus the value
S(X © Y) © Y' has been precomputed for every possible 3-
tuple of values. For first-order masking, the output mask and
the input mask are equal (i.e., M = M'). In this case, the
dimension of the table is 'In instead of 3n and the look-up
table becomes GLUT[Z © M, M], where Z, M and M' are
variable of n-bits. Owing to its structure the preferred target
is a BRAM. Compared to an unprotected Sbox S of size
2™ x p, a first-order masking GLUT requires 2 2 n x 2p. Very
often the hardware implementations computes the whole state
in parallel, requiring multiple instances of GLUT. Therefore
the basic GLUT technique can be sometimes difficult to be
realized in FPGA when n is high (for example n = 8 in
AES). The size of GLUT further explodes when the desired
resistance is of order d > 1.

An optimized version of GLUT in FPGA logic was pro­
posed in [12] with a net overhead of roughly 3x . However
the implementation of GLUT in logic is sensible to higher-
order attacks which exploit the leakage due the glitches. In [2],
authors propose a first-order SCA resistant countermeasure
using BRAM scrambling. BRAM scrambling implements a
2™ x p masked Sbox with a single mask. This Sbox uses
the same mask for several encryption, which limits the order
of SCA resistance. In the mean time, another Sbox which
is masked with a different mask is written to the other
port of BRAM. Once the second Sbox is ready, it is used
for encryption while the first Sbox is refreshed with a new
mask. Another first-order countermeasure in the same line was
proposed in [13], which proposes the reuse of Sboxes to reduce
overhead. The main advantage of this masking scheme is that
it does not need a parallel mask-computation path which also
forms a basis for our masking scheme. Our masking scheme
uses “precomputed” Sboxes with a random (secret) offset for
every encryption. We show that it is possible to design a
masking scheme with reduced entropy < n bit, and achieve
SCA resistance up to order d for a well chosen set of mask.

C. DPL and use of BRAM

The modus operandi of dual-rail circuits is to add redundant
logic of opposite nature to achieve constant activity irrespec­
tive of the data processed. A DPL protocol converts every bit
x to (xT, xF). Complementary values of xT and xF are desired
for a proper balance and thus considered as valid values.
Similar values for the pair (xT, xF) can be used as separators
between valid values. Thus DPL operates in two phases where
valid values are propagated in evaluation phase and a spacer
in precharge phase. Following the conditions stated above,
DPL ensures a constant activity of each compound gate pair.
However, when DPL expands from a single gate to a complex
circuit, different placement and routing delays introduces other
imbalances.

Fig. 2 shows the Wave Dynamic Differential Logic
(WDDL [3]): one of the first introduced DPL for FPGA. It
can be deduced that all logic gates (except inverters) lead
to an overhead of 2 while flip-flops results in an overhead
of 4. WDDL also has a restriction of using only positive
gates which further adds up to the overhead. In Fig. 2, the
gates G and G are well balanced but if their inputs arrive at
different time, an imbalance cannot be avoided. Thus proper
placement and routing is required for a secure DPL design,
in absence of which, DPL could fail due to early propagation
effect (EPE [14]) or routing imbalance [15]. EPE arises from
different evaluation time of a logic gate depending on differ­
ence in arrival of inputs. Routing imbalance is observed due
to asymmetrical routing of T and F rails. Since then, several
improvements to WDDL have been proposed to improve its
resistance. One interesting proposal to counter the routing
imbalance was called as MDPL (Masked Dual-rail Precharge
Logic). MDPL randomly swaps the true and false routing
network to eliminate routing imbalance and also EPE in
iMDPL (improved MDPL [16]). This security improvement of
iMDPL came at an area overhead even greater than WDDL.

Bp) G

Fig. 2. WDDL building block.

Due to the discussed issues, DPL was not considered as a
good countermeasure specially for FPGA application where
a designer has very limited freedom over choice of gates,
placement and routing. Thereafter a couple of DPL counter-
measures were proposed which were able to use BRAM at a
reasonable cost. One of the BRAM based DPL, is SDDL [5].
SDDL used BRAMs at an area overhead of 2× compared
to the unprotected design. This limited overhead comes from
the reset feature present in the Xilinx BRAM which can
reset the output as desired. The reset was used for precharge
propagation at the output of the Sbox. Another DPL called

A
B

Dual-rail

S

B C D L (Balanced Cell-based Dual-rail Logic [14]) can also
use B R A M at an overhead of 4× owing to a synchronization.
The synchronization signal of B C D L also solves the problem
of EPE. However both S D D L and B C D L do suffer from
routing imbalance and therefore need back-end techniques for
balancing the dual-rail. A E S with T-tables reduces the fanout
which in a way reduces routing imbalance and makes back-end
balancing easier [17].

I I I . EXPLOITATION OF B R A M TO OPTIMIZE
COUNTERMEASURES

In this section, we propose two methods benefited from
B R A M features for implementing secure circuits at a reason­
able cost. The first method is applied to masking countermea-
sures by exploiting huge memory array and dual-port nature
of the B R A M . The next method presents a new way (using
B R A M) to organize the sequential part of crypto-algorithm in
a compact and balanced manner.

A. Optimized Masking Implementation using BRAM

Several solutions are proposed to mask the non-linear op­
eration (now called Substitution box or Sbox) of a cipher
but all solutions have a significant overheads. Since we are
using B R A M in our implementation, we focus on G L U T as
the solution to mask the Sbox. G L U T is a precomputed table
which accepts the masked Sbox input (n-bits) and the mask
(n-bits) as inputs. It returns a masked Sbox output (p-bits) and
the correction value (p-bits). For example, in DES a 64 × 4
Sbox is replaced by G L U T of size 4096×8. Similarly for AES ,
the size of the G L U T is 65536×16 for a 256×8 Sbox. Please
note that in hardware where implementations are parallel in
general, several instances of a Sbox are used and all of them
must be masked. In a low-cost FPGA like Xilinx Virtex-5
LX30, a parallel DES implementation is still possible but not
for AES . A single A E S G L U T would occupy about 90% of
the available B R A M , making a parallel A E S implementation
unfeasible.

It is possible to design a masking implementation which
reduces the overhead of G L U T still keeping it resistant to the
certain higher order of side-channel attacks. Masking schemes
can reduce the G L U T overhead by reusing the mask and thus
reducing the overhead from 22n × 2p to 2 n + k × p where
k < n is the entropy of the mask. In other words, instead
of using 2n different values to mask the data, only 2k values
are used. For a proper hardware optimization, the number of
Sboxes in a cipher N should be a multiple of k. Such an
implementation generally protects against first-order attack,
however by application of coding theory, the right set of mask
can be chosen to resist zero-offset higher-orders (univariate
attacks targeting a single Sbox). In the following, we consider
univariate attacks which combine different leakages.

For simplicity, we restrict ourselves to ciphers (e.g., AES ,
PRESENT) where all the N Sboxes are the same and of
bijective construction, i.e., of the format 2n × n. Ciphers not
abiding by these conditions are still possible to protect by this
scheme with an extra overhead. The details of this masking

scheme are as follows. Firstly, a set of 2k n-bit mask M
is chosen. Now both the input and output of each Sbox S
are masked as: S(x © m¿) © rni+i where m¿ and m i + i are
consecutive elements of the set M. Actually i and i + 1 are to
be understood as (i mod 2fc) and ((i+1) mod 2fc) (omitted
for simplicity of representation). The masked Sbox is now
denoted as Sm and is of the same size as unmasked S. I f 2k

is equal to N then all the Sboxes are unique. At each round of
the algorithm, the Sboxes Sm are reused by circular rotation
of one position. Let us consider a masked state x' = x © m¿
is computed by Smi which is masked with m¿ in the current
round r. In the next round, x' is processed by Smi+1. Precisely
the computation done by Smi+1 wi l l be S(x' © m¿) © m¿+ i
which is simplified to S(x) © mi+i. Similarly in the next
round, mask m¿+ i is removed at the input of Sbox Smi+1 and
m¿+2 is applied at the output. I f the Sboxes are not bijective,
an expansion function should be put in place to make the
output of Sbox coincide with size of the mask.

The set of mask M can be public however the M should
be shifted by a random offset before each encryption. M is
chosen such that the jth order moment of the conditional
leakage L?\Z = z given a guess on the sensitive variable
Z are all the same for j = 1, 2, • • • ,d. Thus only an attack
of order (d+l) can succeed. Under this constraint, the masks
set M must be an orthogonal array of strength d [18]. The
linear operations are masked by a simple XOR operation with
precomputed constants applied at the end of each round. The
N x n bit constants are chosen as a function of initial offset
and can be stored in BRAM as well. It is not always possible
to find a solution for M which resists at order d. Another
feature of FPGA which comes handy in such cases is dynamic
reconfiguration. If it is not possible to find a solution for M
at order d, designers can opt for several sets of M with order
< d and update them regularly. Since the mask dependent part
is inside the memory, modern FPGA kits have specific tools
which can reconfigure the FPGA to just change the BRAM
content. Alternately, concurrent read and write technique used
in [2] can be used by doubling the memory overhead.

Srn

Fig. 3. Optimized implementation of proposed masking scheme without
barrel shifters

N n

The required rotation in the presented masking scheme
can be done using barrel shifter. Since the barrel shifters are
composed of series of multiplexers which are a major source
of glitches in FPGA, they can cause unintentional leakage.
Barrel shifters are also resource consuming and affecting
the performance of the whole system. For example, a 128­
bit barrel shifter would alone acquire around 100 slices in
Xilinx Virtex-5 LX-30 FPGA. BRAM can be very efficiently
used in this application to get rid of barrel shifters and thus
glitches. The scheme to organize the Sboxes and implement
them in BRAM is shown in Fig. 3. These Sboxes can be
further compressed by using dual-port memory. All the masked
Sboxes Sm are placed in each BRAM. From one BRAM to
another, Sm are laid with an offset of 1. Thus the BRAM has
an input address of n + k bits where n is the input of the Sm

and k selects the correct masked Sbox from Sm0 to Sm N . k
forms the most significant bits of n+k . Thus the memory cost
is multiplied by 2k but can be small in terms of number of
blocks. Since all the BRAM contain same Sboxes in different
order, the dual-port feature can be used to access the same
data with the corrected offset.

1) Application to AES-128: Now we apply the presented
scheme to secure a parallel AES-128 co-processor which
computes one round per clock cycle. For AES, n = 8 and
N = 16. We found that it is possible to select a mask M for
AES which resist up to order d = 3. M is the cosets of the
linear code [8, 4, 4] and thus k = 4 of 16 mask. We found the
set

M= [245, 226, 222, 201, 187, 172, 144, 135, 120, 111, 83, 68, 54, 33, 29, 10],

should be order 3 resistant. To optimize the scheme we use
the input register of BRAM as state register. An unmasked
AES Sbox is 2Kb which makes the composite Sbox (Sm0

to SmN) of size 16 × 2 = 32Kb. This composite Sbox
which easily fits in a Xilinx BRAM of 36Kb, now has 12
bits of address, i.e., 8 bits corresponding to masked byte
concatenated with 4 bits of offset. Moreover the dual-port
feature of the BRAM can reuse the same memory space
with two different ports. Thus N = 16 Sboxes need only
N/2 = 8 BRAM. The overhead of presented masking scheme
as compared to unprotected reference AES is shown in Tab. I I .
The precomputed round unmasking constants are implemented
in BRAM which consumes 8 extra blocks. The net overhead
in terms of slices is only 16% with minor loss of frequency.
Since higher-order attacks of order 4 and greater are difficult to
realize in practise [19], an order 3 masking with mere overhead
of 16% is a very practical solution.

T A B L E I I
AREA AND FREQUENCY OVERHEAD OF MASKED A E S AFTER

OPTIMIZATION ON VIRTEX-5.

Architecture

Slices
Registers
BRAM

Max. Frequency [MHz]

Unprotected

733
0
8

144.3

Masked

856
0
16

141.1

Overhead

1.16x
Ox
2x

1.02x

B. Optimized DPL Implementation using BRAM

DPL involves duplication of each component of the circuit
to ensure a balanced activity. Duplication of standard logic is
simple which leads to an overhead of little over twice in terms
of resources used. However a simple duplication of memory
leads into exponential increase in overhead. A memory of size
2n × p, will have an overhead of 2 n + 1 up on duplication.
This overhead can be reduced to just 2× by using BRAM
properties. The BRAM overhead is not the only problem. For
a DPL circuit to have a constant activity in every cycle, a
precharge spacer should flow through the whole circuit.

We propose a method to further optimize FPGA imple­
mentations of DPL both in terms of area and security. This
optimization exploits the following features of BRAM: input
register, output register with reset, dual-port nature and hard
macro. A DPL flip-flop is made of 4 flip-flops (Fig. 2), where
each flip-flops pair (master-slave) is located in the true and
false rails. The input register can be used for the master flip-
flop and the output register serves as the slave. The use of
output register also introduces a latency of one clock cycle.
The extra cycle latency is not a problem in DPL because it aids
the two-phase DPL protocol. Moreover, the dual-port feature
allows to implement the true and the false rails of the flip-flop.
The optimization scheme is depicted in Fig. 4.

INT

SBOXT

>

INF

SBOXp

>

OUTp

Fig. 4. Proposed Scheme to implement a DPL SBOX and Flip-Flops in a
BRAM.

A very common issue in DPL design is the propagation of
precharge or the spacer. Since the BRAM will be preceded by
some combinational circuit, the spacer is easily propagated to
the input register of the BRAM. To precharge the output regis­
ter, the reset (also known as SSR [5]) feature provides just the
right solution. Only the combinational gates are implemented
in FPGA slices. The proposed architecture brings a three-fold
advantage for implementing DPL design into FPGA. Firstly,
the logic is not used to implement two-stages (otherwise
leading to 4×) of the state registers thus significantly reducing
the overhead. Secondly, the regular structure of BRAM ensures
proper and balanced placement of the main leakage source of
the design, i.e., state register. Finally, it is known that leakage
from a BRAM itself is less than flip-flops in FPGA slices, thus
enhanced SCA resistance [5]. The balanced placement of XOR
gates can be ensured by using LUT6 2 from Xilinx to place
the whole dual-rail cells (G and G in Fig. 2). Balancing routing
in FPGAs is challenging, because FPGA architecture and
CAD tools are not designed for these weird DPL structures.

ÜU li

M S

FORI A

PORT B

M S

LLK

Freeharge

But some amount of balancing can be achieved by proper
placement. Balancing routing is another area of research, and
repair techniques like proposed in [15] can repair routing with
extra effort, but it falls out of the scope of this paper.

1) Application to AES-128: To test our proposed optimiza­
tion on a real DPL circuit, we had two choices: SDDL and
BCDL. To our knowledge, SDDL and BCDL, are the only
DPL subsets proposed which are capable of using BRAM at
reasonable cost. Since SDDL suffers from security issue like
EPE, we choose to apply our optimization on BCDL. The
target algorithm is AES-128 using T-tables because T-tables
merge SubBytes and MixColumns function in a precomputed
table, thus reducing the routing fanout. Precisely, we use the
implementation of AES-128 protected by BCDL as described
in [17]. Applying our technique to further optimize BCDL,
BRAMs and flip-flops are merged into a single entity.

T A B L E I I I
AREA AND FREQUENCY OVERHEAD OF B C D L FOR A E S MODULE
EXCLUDING K E Y EXPANSION AFTER OPTIMIZATION ON VIRTEX-5.

Architecture

Slices
Registers
BRAM

Max. Frequency [MHz]

Unprotected

176
0
8

258

BCDL

1128
0
16

283

Overhead

6.4x
Ox
2x

0.911x

The overhead of protecting A E S with B C D L after applying
our optimization is given in Tab. I I I . Both the unprotected A E S
and its B C D L version implement state registers in B R A M .
The number of slices is increased by roughly 6.4x as X O R in
B C D L is costly as also pointed in the original paper [17]. It
is limited to 1 -LUT per bit of X O R . The BRAMs are simply
doubled, while the performance is improved due to the usage
of output register of the B R A M . As BRAMs are a hard-macro,
balanced placement of the sequential part of A E S (128*4
bits registers) is ensured without placement constraints. D P L
balancing has been checked by the post P & R i.e. absolutely
close to on-device conditions. Besides, B C D L is free of glitch
by design. We do a proof of concept study to quantify the
gain of balanced placement and keep routing untouched for
the two designs to have a fair evaluation.

I V . SECURITY A N A L Y S I S

The previous sections dealt with the implemetation aspect
of the proposed optimizations to masking and D P L . Now
we analyze the implemented countermeasures from a security
aspect with respect to S C A .

A. Attack Metrics and Experimental Platform

Let us denote a random variable L representing the side-
channel leakage (e.g., power consumed) while computing
Z = f(X.K). K is the n-bit secret key and X is a variable
quantity known to the attacker. Time is another parameter
not shown. A standard S C A tries to find correct key k* for
which Z and L have maximum dependency. Since L is noisy,
thus several measurements of Z are required to estimate L.
For hardware implementation, the leakage L depends on the
Hamming distance (HD) model. It expresses at first-order the
power consumption of C M O S gates in electronic devices as it

corresponds to signal transitions. The leakage can be expressed
as:

L = HD(Z, R) + N = HW(Z © R) + N,

where N is the noise, and R is the reference state. HW(X)
is the Hamming Weight function which returns the number of
bits set to 1 in binary representation of X.

For SCA analysis, we use Correlation Power Analysis
(CPA [1]) as a distinguisher. CPA is a computation of the
Pearson Correlation Coefficient p between the side-channel
leakage T and the expectation of the leakage model L knowing
Z, noted E(L|Z) , which can be estimated as:

,r„ E s¿Lo(*¿ ~ Mr) • (E(L\Z = z¿) - ME(-LIZ))
p(l , (L\Z)) = ,

®T ' ^E(L\Z)

where a and /x denote the standard deviation and the
mean respectively, and n is the traces count. To analyze the
efficiency of SCA, two metric are used. The first metric is
Minimum Traces to Disclosure (MTD), i.e., the minimum
number of measurements needed to perform a successful
attack. The other metric used is called guessing entropy which
generally is useful when an attack is not successful. Guessing
entropy gives the average number of key hypothesis to test to
reveal the correct key.

We test our designs on Xilinx Virtex-5 FPGA soldered on
a SASEBO-GII platform. For SCA, traces are acquired on
a 54855 Infiniium Agilent oscilloscope with a bandwidth of
6 GHz and a maximal sampling rate of 20 GSample/s, using
an antenna of the HZ-15 kit from Rohde & Schwarz. Since
the analysis results can widely vary from one measurement
setup to another, we always use a reference implementation to
give readers an idea of the security gain achieved.

B. Security Analysis of Masked AES

To develop the leakage-function of masking we refer back
to Eq. (1). For a first-order mask, the prediction function z \->
E (H W (Z © M) + HW(M)\Z = z) reduces to aconstantand
makes simple SCA attacks impossible. To exploit the leakage
from masked implementation zero-offset SCA [] are often
used. These attacks are based on the principle that higher-
order moments are related to the key. For a masking of order
d, the d+1 order moment can be key-dependant. Theoretically,
p(Td+1 ,E(L\Z)) should result in a successful attack, where
T are the centered side-channel traces. However, as the order
d increases, CPA becomes less practical because the noise in
the traces is amplified. Moradi in [] suggests that attacks of
order 5 and greater can be considered far from practise. We
acquired 150,000 side channel traces (averaged 16 times) for
the masked implementation explained in Sect. I I I -A1.

The presented masking is a special case where the number
of mask is 16 and the mask set is public. The secret is the 4-
bit offset which is not known to the attacker. In this case, the
leakage function can be written as HW(Z © M)d, d being
the power at which the attacker raises the centered traces.
The prediction function is z \-> E(HW(z © M)d), i.e., the
leakage to the power d averaged over the whole set M for all

(a)

(b)
Fig. 5. (b) Variance of the predicted leakage for first three Sboxes at (a)
order 1, 2 and 3; (b) Order 4 leakage L

offsets. We tested the values of possible predicted leakage (i.e.
E((z M)d)) for 256 possible subkeys of two chosen Sbox for
order 1-4. As expected, the predictions came out to be constant
for order 1, 2 and 3 which renders the attack impractical. Since
the actual prediction is constant, its Hamming weight will also
be constant. Only at order 4, the predictions vary from each
other as shown in Fig. 5 (b) which points towards possibility of
an attack. In Fig. 5 (b), it is normal to have a higher variance
of prediction in Sbox 0 as it covers only 163 of the 256 value
due to absence of ShiftRows. Sbox 1 and 2 cover all 256
values and thus show lower variance. We tried a 4-th order
attack on the set of acquired traces which failed probably due
to limited number of traces or high noise at order 4. Thus the
masking scheme is shown to be compact and secure at least
up to order 3.

C. Security Analysis of DPL AES

Theoretically, a DPL design should be leakage-free. DPL is
a special case where any two evaluations are separated by a
precharge phase. In a well-balanced DPL circuit, along with
every Z , a Z is also computed, which can be modelled as:

L = HW(Z) + HW(Z) + N .

Ideally, HW(Z)+HW(Z) is a constant which reduces the
leakage L to just noise. Now if we also consider placement
and routing imbalance, Z and Z do not occur simultaneously.
Thus for short periods of time, L depends either on HW(Z)
or HW(Z), which reduces the model to HW(Z) .

(a)

(b)
Fig. 6. Dual-rail timing bias in (a) B C D L O L D , (b) B C D L N E W

Now we try to quantify the security improvement brought
due to balanced placement of B C D L by the proposed opti­
mization. As previously stated, net delay bias has significant
impacts on the balance between the dual rails of D P L logic.
We achieved better routing balance between the nets for the
security sensitive nets in the optimized B C D L (now referred
as B C D L NEW) as compared to original B C D L (now referred
as B C D L O L D) version. We would like to remind the readers
that the B C D L O L D implements the state register in FPGA
slices. Fig. 6 depicts net delays and the differences between
each of the 128 pairs of input nets to the flip-flop (same as
B R A M input in B C D L NEW) . We choose these nets because
they accumulate the maximum delay and therefore are most
sensible to bias. Values for T and F rails are outlined by
different colours. B C D L N E W has a smaller delay difference
as compare to B C D L O L D . Averaged delay bias from the
old B C D L to the new one is reduced roughly from 0.25ns to
0.12ns, roughly a reduction factor of 1.48.

Further we analyzed the two architectures using CPA over
100,000 traces which were averaged 16 times. The result is
shown in Fig. 7. The Sboxes with M T D more than 100,000
traces indicate insufficient traces for a successful attack. So we
plot the guessing entropy of the correct key in Fig. 7(b). It can
be simply deduced from the plot that with the optimization,
the resistance has been improved. We cannot directly connect
the timing result with the CPA result because of lack of precise
information on the physical properties of the device. However,
both the timing and CPA results favour the improved B C D L
(B C D L NEW) .

V . CONCLUSIONS AND PERSPECTIVES

In this paper, we investigated the power of BRAMs available
in FPGAs to implement intrinsic countermeasures. BRAMs
possess many features which can aid the designers of cryp­
tographic circuits. These features like presence of registers at

(a)

Rank
High

1

51

101

151

201

251

Rank

Sbox Sbox Sbox Sbox Sbox Sbox sbox: Sbox Sbox Sbox Sbox sbox Sbox Sbox
0 1 2 3 4 5 6 7 8 9 10 11 12 13

7 ^ C ^ v ^ \ • ~ - r-

Sbox sbox
14 15

ta
Rightsubkey forSbox 3hastheLowest (ion]

rankpostion (27) for BCDL_OLD V . . / ^ éf^—^

Right subkeys for Sbox fiansSbox 12 have the

Lowest rankpostion (100) for BCDL NEW

—§—BCDL_OLD a - :BCDL_NEW

(b)
Fig. 7. (a) MTD and (b) Guessing entropy for the two BCDL circuits after
CPA on 100k traces

input and output, ability to reset the output register, dual-port
nature can be very well exploited. Also the regular structure
of B R A M (hard-macro) saves the designers from applying
specific placement constraints. We exploit these features to
propose compact and secure implementation of existing coun-
termeasures (masking and DPL) . The optimizations have been
applied on A E S co-processor and tested on Xilinx Virtex-5
FPGA. Their security analyses reveal positive results. The
masking countermeasure had an overhead of only 16% and
was shown to be secure for the chosen model, thanks to
the removal of barrel shifters. In the D P L countermeasure,
the whole sequential part of A E S that is also the main
source of leakage was packed inside the B R A M with balanced
placement by design. To our knowledge, the implementations
proposed are the most compact of the state-of-the-art. Thus
security is a another parameters which motivates integration
of ample B R A M resourses into FPGA chips.

Finally we would like to conclude that the security of a
countermeasures depends specific leakage model of the device.
Therefore it should be interesting to research formal methods
to characterize leakage models for the given device.

ACKNOWLEDGMENTS

This research is partly supported by Strategic Interna­
tional Cooperative Program (Joint Research Type), Japan
Science and Technology Agency (JST), and the French Agence
Nationale pour la Recherche (ANR), via grant for project
SPACES (Security evaluation of Physically Attacked Cryp-
toprocessors in Embedded Systems).

REFERENCES

[1] E .́ Brier, C . Clavier, and F. Olivier, “Correlation Power Analysis with
a Leakage Model,” in CHES, ser. L N C S , vol. 3156. Springer, August
11–13 2004, pp. 16–29, Cambridge, M A , U S A .

[2] T. Gü neysu and A . Moradi, “Generic side-channel countermeasures for
reconfigurable devices,” in CHES, ser. L N C S , B . Preneel and T. Takagi,
Eds., vol. 6917. Springer, 2011, pp. 33–48.

[3] K . Tiri and I . Verbauwhede, “ A Logic Level Design Methodology for
a Secure DPA Resistant A S I C or FPGA Implementation,” in DATE’04.
IEEE Computer Society, February 2004, pp. 246–251, Paris, France.
DOI: 10.1109/DATE.2004.1268856.

[4] L . Goubin and J . Patarin, “DES and Differential Power Analysis. The
“Duplication” Method,” in CHES, ser. L N C S . Springer, Aug 1999, pp.
158–172, Worcester, M A , U S A .

[5] R. Velegalati and J.-P. Kaps, “Techniques to enable the use of block
RAMs on FPGAs with dynamic and differential logic,” in International
Conference on Electronics, Circuits, and Systems, ICECS 2010. IEEE,
Dec 2010, pp. 1251–1254.

[6] Xilinx, “Spartan-6 FPGA Block R A M Resources User Guide — UG383
(v1.5),”
http://www.xilinx.com/support/documentation/user guides/ug383.pdf.

[7] Altera, “Stratix-II Device Handbook — Volume 1,”
http://www.altera.com/literature/hb/stx2/stratix2 handbook.pdf.

[8] S. Drimer, T. Gu¨neysu, and C. Paar, “DSPs, BRAMs and a Pinch of
Logic: New Recipes for the A E S on FPGAs,” in IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE,
14-15 Apr 2008, pp. 99–108, stanford, Palo Alto, C A .

[9] S. Bhasin, S. Guilley, A . Heuser, and J.-L. Danger, “From cryptography
to hardware: analyzing and protecting embedded Xilinx B R A M for
cryptographic applications,” Journal of Cryptographic Engineering,
vol. 3, no. 3, 2013. [Online]. Available: http://dx.doi.org/10.1007/
s13389-013-0048-4

[10] S. Chari, C . S. Jutla, J . R. Rao, and P. Rohatgi, “Towards Sound
Approaches to Counteract Power-Analysis Attacks,” in CRYPTO, ser.
L N C S , vol. 1666. Springer, August 15-19 1999, Santa Barbara, C A ,
U S A . I S B N : 3-540-66347-9.

[11] E . Prouff and M . Rivain, “ A Generic Method for Secure SBox Imple­
mentation,” in WISA, ser. Lecture Notes in Computer Science, S. Kim,
M . Yung, and H.-W. Lee, Eds., vol. 4867. Springer, 2007, pp. 227–244.

[12] F. Regazzoni, Y. Wang, and F.-X. Standaert, “FPGA Implementations
of the A E S Masked Against Power Analysis Attacks,” in COSADE,
February 2011, pp. 56–66, Darmstadt, Germany.

[13] M . Nassar, Y. Souissi, S. Guilley, and J.-L. Danger, “ R S M : a Small
and Fast Countermeasure for A E S , Secure against First- and Second-
order Zero-Offset SCAs,” in DATE, March 12-16 2012, pp. 1173–
1178, Dresden, Germany. (TRACK A : “Application Design”, TOPIC
A5: “Secure Systems”).

[14] M . Nassar, S. Bhasin, J.-L. Danger, G . Duc, and S. Guilley, “ B C D L :
A high performance balanced D P L with global precharge and without
early-evaluation,” in DATE’10. IEEE Computer Society, March 8-12
2010, pp. 849–854, Dresden, Germany.

[15] W. He, A . Otero, E . de la Torre, and T. Riesgo, “Automatic generation
of identical routing pairs for fpga implemented dpl logic,” in ReConFig.
IEEE, 2012, pp. 1–6.

[16] T. Popp, M . Kirschbaum, T. Zefferer, and S. Mangard, “Evaluation of
the Masked Logic Style M D P L on a Prototype Chip,” in CHES, ser.
L N C S , vol. 4727. Springer, Sept 2007, pp. 81–94, Vienna, Austria.

[17] S. Bhasin, S. Guilley, Y. Souissi, T. Graba, and J.-L. Danger, “Efficient
Dual-Rail Implementations in FPGA using Block RAMs,” in ReConFig.
IEEE Computer Society, November 30 – December 2 2011, pp. 261–
267, Cancu´n, Quintana Roo, Me´xico. D O I : 10.1109/ReConFig.2011.32.

[18] A . S. Hedayat, N . J . A . Sloane, and J. Stufken, Orthogonal Arrays,
Theory and Applications, ser. Springer series in statistics. New York:
Springer, 1999, I S B N 978-0-387-98766-8.

[19] A . Moradi, “Statistical tools flavor side-channel collision attacks,” in
EUROCRYPT, ser. Lecture Notes in Computer Science, D . Pointcheval
and T. Johansson, Eds., vol. 7237. Springer, 2012, pp. 428–445.

[20] J . Waddle and D . Wagner, “Towards Efficient Second-Order Power
Analysis,” in CHES, ser. L N C S , vol. 3156. Springer, 2004, pp. 1–
15, Cambridge, M A , U S A .

http://www.xilinx.com/support/documentation/user
http://www.altera.com/literature/hb/stx2/stratix2
http://dx.doi.org/10.1007/

