
Exploiting FPGA Block Memories for Protected 
Cryptographic Implementations 
Shivam Bhasin , Wei He , Sylvain Guilley and Jean-Luc Danger 

Abstract—Modern Field Programmable Gate Arrays (FPGAs) 
are power packed with features to facilitate designers. Availability 
of features like huge block memory (BRAM), Digital Signal Pro­
cessing (DSP) cores, embedded CPU makes the design strategy of 
FPGAs quite different from ASICs. FPGA are also widely used 
in security-critical application where protection against known 
attacks is of prime importance. We focus ourselves on physical 
attacks which target physical implementations. To design counter-
measures against such attacks, the strategy for FPGA designers 
should also be different from that in ASIC. The available features 
should be exploited to design compact and strong countermea-
sures. In this paper, we propose methods to exploit the BRAMs 
in FPGAs for designing compact countermeasures. BRAM can 
be used to optimize intrinsic countermeasures like masking and 
dual-rail logic, which otherwise have significant overhead (at 
least 2X). The optimizations are applied on a real AES-128 co­
processor and tested for area overhead and resistance on Xilinx 
Virtex-5 chips. The presented masking countermeasure has an 
overhead of only 16% when applied on AES. Moreover Dual-rail 
Precharge Logic (DPL) countermeasure has been optimized to 
pack the whole sequential part in the BRAM, hence enhancing the 
security. Proper robustness evaluations are conducted to analyze 
the optimization for area and security. 

Keywords: FPGA, Side-Channel Analysis, Block Memo­
ries, Countermeasures. 

I. INTRODUCTION 

Security is now one of the major driving factors of semi­
conductor industry. Often there is a need to secure the whole 
system-on-chip (SoC), which generally is achieved by em­
bedded cryptographic cores (crypto-cores). Depending on the 
application, these crypto-cores are used to encrypt/decrypt 
sensitive data in all parts of the system, ranging from memory 
content to system-bus. A major threat known as "Side-Channel 
Attacks" (SCA [ ]) has been pointed out about 17 years ago, 
but curiously the design of solid and efficient protections 
is still an open research area. SCA generally exploits the 
unintentional leakages from the physical implementation of the 
crypto-cores. This brings into play countermeasures to protect 
the physical implementation of cryptography, which can be 
classed into intrinsic and extrinsic countermeasures. Extrinsic 
countermeasures are applied in parallel to crypto-cores in order 
to confuse the attacker. Countermeasures involving generation 

of noise, misalignment of activity generally fall in this cate­
gory [2]. 

Although extrinsic countermeasures have a limited over­
head, their resistance depends on the power of the attacker. 
Consider a noise generator which is deployed to provide 2x 
SCA resistance than the unprotected crypto-core. The power of 
the countermeasure is related to the extra effort required by the 
attacker to acquire twice the number of traces. If the attacker 
needs only a couple of seconds more to acquire the extra 
traces, then the security enhancement is negligible. Therefore 
a common practice is to combine several extrinsic countermea­
sures with protocol level countermeasures. However provable 
security is not assured. 

Intrinsic countermeasures are the other solution which, 
as the name suggests, are built into the algorithm. These 
countermeasures modify the implementation of the cipher in 
order to leak little or no sensitive information in the side 
channel. Also these countermeasures often come with a non-
negligible overhead. Intrinsic countermeasures further fall into 
two wide categories, i.e., masking and hiding. 

Hiding countermeasures generally comprise of dual-rail 
precharge logic (DPL [;]). DPL is a circuit-level countermea­
sure which aims at flattening or removing the data-dependent 
leakage from the circuit. Removal of data-dependant leakage 
is achieved by putting in place a generated False (F) rail 
that works simultaneously together with the original True (T) 
rail for compensating each other's activity. DPL operates in 
two phases: Precharge, i.e., where all the values are reset 
to a constant value, and Evaluation, where the cryptographic 
computation is performed. The two-phase operation with a 
dual-rail structure (theoretically) ensures constant activity and 
is therefore free from any exploitable data-dependent leakage. 

Masking on the other hand is generally applied at the 
algorithmic level. The basic idea of masking is to protect 
all the sensitive intermediate values inside a cryptographic 
algorithm by applying a random mask [4]. The random mask 
is removed at the end, which involves complex computation 
on the value of mask, generally done by implementing the 
masked path in parallel to the actual algorithm. The linear 



operations of a cryptographic algorithm can be easily tuned 
to masking. Masking the non-linear operations is not an easy 
task, as the overhead associated with it is exponential. 

For a secure implementation, DPL needs balanced place­
ment and routing of its component. Masking does not have 
such strict requirements at the circuit level but the non-linear 
operation is often hard to be realized in a secure manner. 
The availability of high-density block memories (BRAMs) 
in FPGA can help to solve both problems. BRAMs are 
capable of storing huge tables, which are often present in the 
non-linear part of protected ciphers (e.g., masked/ dual-rail 
Sbox). Thus intrinsic countermeasures become realizable in 
FPGA due to BRAMs. Several other features (discussed in 
Sect. II-A) are present in BRAMs which can be exploited to 
optimize the implementation of the cipher. BRAMs are also 
known to provide elevated security as compared to its logic 
counterpart [5], and are often recommended to implement 
intrinsic countermeasures. BRAM are also largely deployed 
in implementing hash function and other cryptographic appli­
cations. 

In this paper, we concentrate on BRAMs present in FPGAs 
in the context of intrinsic countermeasures. In particular, 
we propose methods to efficiently use BRAM to implement 
countermeasures with reduced area overhead and higher SCA 
resistance. Although generic countermeasure are favourable, 
it as well makes sense to exploit new features to realize 
compact and robust countermeasure. Firstly, we propose a 
method to exploit the features of BRAM in-order to implement 
masking and DPL countermeasures with limited overhead. The 
proposed optimizations are applied on a real AES-128 co­
processor. All the AES implementations tested implement the 
sboxes in BRAMs, as this configuration has been shown to 
offer enhanced resistance against SCA [5]. Next we analyze 
the security of these countermeasures in the presence of 
BRAM. We show that it is possible to use modern FPGA 
features to effectively implement intrinsic countermeasures. 

The rest of the paper is organized as follows: Sect. I I gives 
general background on BRAM architecture in FPGA, its appli­
cation in masking and DPL countermeasures. Next in Sect. I I I , 
we propose two methodologies to exploit BRAM features 
in an FPGA to optimize masking and DPL countermeasures 
respectively. The proposed optimization are applied on an 
AES-128 co-processor for experimental validation. The SCA 
evaluation of proposed protection methodologies is discussed 
in Sect. IV. Finally, Sect. V draws general conclusion. 

I I . B R A M IN CRYPTOGRAPHIC APPLICATIONS 

In this section, we first discuss the features of an FPGA 
BRAM. A special focus is laid on the application of these 
features to optimize SCA countermeasures. Thereafter a gen­
eral background of the used countermeasures, i.e., Masking 
and DPL are provided. 

A. Block RAM in Modern FPGA 
Modern FPGAs possess huge blocks of memories which 

are synchronous in nature. For example, the latest Xilinx FP-
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Fig. 1. Internal Architecture of Xilinx B R A M . 

T A B L E I 
FEATURES OF A X I L I N X B R A M . I N THE TABLE, 1 SIGNIFIES AN 
IMPROVEMENT I N AREA OR PERFORMANCE AND 2 SIGNIFIES AN 

IMPROVEMENT I N S C A RESISTANCE. 

BRAM Feature 
High Density RAM 

Internal Register at input 

Dual-Port Nature 

Output Register 

Reset 

Hard Macro in ≤ 65nm CMOS 

Application to Cryptography 
To implement huge data1 

To implement state register1 

Not connected to FPGA routing2 

No glitches2 

Single block for multiple Sboxes1 

Available resource1 

To achieve better timing2 

To enable precharge propagation in DPL1,2 

Low leakage power2 

To balance placement1,2 

GAs have several blocks of 36Kbits true dual-port memories. 
The exact design of these BRAMs is not public but a few 
details about the general architecture of these BRAMs are 
documented [ ] . Fig. 1 shows one port of a dual-port BRAM 
in Spartan-6 FPGA. It can be deduced from the figure that the 
BRAM contains register to synchronize input data and address 
before accessing the memory array. The memory array is 
followed by a latch and an optional output register. BRAM also 
contains several signals to control the use of output register 
or set/reset the value of the latch and output register. Altera 
AltSyncRam [7] also possess a similar BRAM architecture. 
Therefore the presented solution can also be extended to Altera 
FPGAs. 

As previously stated, BRAMs are recommended for crypto-
applications. Tab. I summarizes the features of a BRAM and 
their use in relation to cryptographic applications. 

Some of these options have already been used in crypto­
graphic applications. Internal Register at input for state and 
Dual-Port Nature was first used by Drimer et al. in [ ] . Reset 
in the BRAM was also used in Separated Dynamic Differential 
Logic (SDDL [5]) to enable precharge propagation. In [9], 
authors have shown that the internal register at input (address) 
of BRAM leaks very less and difficult to attack. Moreover, we 
assume that it is very unlikely to seperate activities of the two 
ports of a BRAM being a hard-macro in < 65nm CMOS. 

B. Masking and the use of BRAM 
Masking relies on variable representation of sensitive data 

into randomized shares [10]. A dth-order masking scheme 
splits a sensitive variable Z G F ™ into d + 1 random shares, 
noted S = (£¿)¿e[o,<¡], in such a way that the relation 
So -L • • • -L Sd = Z is satisfied for a group operation _L (e.g., 
the XOR operation in Boolean masking). For a simple Boolean 
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masking scheme, order d = 1. When masking is implemented 
in hardware, generally the mask as well as the masked data 
are computed in parallel. Keeping this detail in mind, the 
leakage function for the first-order masking countermeasure 
in hardware can be expressed as: 

L = HW(Z © M) + HW(M) + N (1) 

The share M is the random mask uniformly distributed over 
F!? and the share Z © M is the masked variable. Variables Z 
and M are assumed to be mutually independent. The linear 
parts of the cipher are easier to be masked but the computation 
of non-linear Sbox S in presence of masking is difficult. 
It involves computing S(Z) © M' from the variables M, 
Z © M and M' (new mask) without compromising with SCA 
resistance. 

To deal with this problem, one of the most common 
solutions is the Generalized Look-Up Table (GLUT [11]). 
The main idea of GLUT is to precompute a look-up table, 
associated to the function S" : (X, Y, Y') i->- S(X © Y) © Y'. 
To compute the masked variable S(Z) © M', GLUT performs 
a table look-up of GLUT[Z © M,M,M']. Thus the value 
S(X © Y) © Y' has been precomputed for every possible 3-
tuple of values. For first-order masking, the output mask and 
the input mask are equal (i.e., M = M'). In this case, the 
dimension of the table is 'In instead of 3n and the look-up 
table becomes GLUT[Z © M, M], where Z, M and M' are 
variable of n-bits. Owing to its structure the preferred target 
is a BRAM. Compared to an unprotected Sbox S of size 
2™ x p, a first-order masking GLUT requires 2 2 n x 2p. Very 
often the hardware implementations computes the whole state 
in parallel, requiring multiple instances of GLUT. Therefore 
the basic GLUT technique can be sometimes difficult to be 
realized in FPGA when n is high (for example n = 8 in 
AES). The size of GLUT further explodes when the desired 
resistance is of order d > 1. 

An optimized version of GLUT in FPGA logic was pro­
posed in [12] with a net overhead of roughly 3x . However 
the implementation of GLUT in logic is sensible to higher-
order attacks which exploit the leakage due the glitches. In [2], 
authors propose a first-order SCA resistant countermeasure 
using BRAM scrambling. BRAM scrambling implements a 
2™ x p masked Sbox with a single mask. This Sbox uses 
the same mask for several encryption, which limits the order 
of SCA resistance. In the mean time, another Sbox which 
is masked with a different mask is written to the other 
port of BRAM. Once the second Sbox is ready, it is used 
for encryption while the first Sbox is refreshed with a new 
mask. Another first-order countermeasure in the same line was 
proposed in [13], which proposes the reuse of Sboxes to reduce 
overhead. The main advantage of this masking scheme is that 
it does not need a parallel mask-computation path which also 
forms a basis for our masking scheme. Our masking scheme 
uses “precomputed” Sboxes with a random (secret) offset for 
every encryption. We show that it is possible to design a 
masking scheme with reduced entropy < n bit, and achieve 
SCA resistance up to order d for a well chosen set of mask. 

C. DPL and use of BRAM 

The modus operandi of dual-rail circuits is to add redundant 
logic of opposite nature to achieve constant activity irrespec­
tive of the data processed. A DPL protocol converts every bit 
x to (xT, xF). Complementary values of xT and xF are desired 
for a proper balance and thus considered as valid values. 
Similar values for the pair (xT, xF) can be used as separators 
between valid values. Thus DPL operates in two phases where 
valid values are propagated in evaluation phase and a spacer 
in precharge phase. Following the conditions stated above, 
DPL ensures a constant activity of each compound gate pair. 
However, when DPL expands from a single gate to a complex 
circuit, different placement and routing delays introduces other 
imbalances. 

Fig. 2 shows the Wave Dynamic Differential Logic 
(WDDL [3]): one of the first introduced DPL for FPGA. It 
can be deduced that all logic gates (except inverters) lead 
to an overhead of 2 while flip-flops results in an overhead 
of 4. WDDL also has a restriction of using only positive 
gates which further adds up to the overhead. In Fig. 2, the 
gates G and G are well balanced but if their inputs arrive at 
different time, an imbalance cannot be avoided. Thus proper 
placement and routing is required for a secure DPL design, 
in absence of which, DPL could fail due to early propagation 
effect (EPE [14]) or routing imbalance [15]. EPE arises from 
different evaluation time of a logic gate depending on differ­
ence in arrival of inputs. Routing imbalance is observed due 
to asymmetrical routing of T and F rails. Since then, several 
improvements to WDDL have been proposed to improve its 
resistance. One interesting proposal to counter the routing 
imbalance was called as MDPL (Masked Dual-rail Precharge 
Logic). MDPL randomly swaps the true and false routing 
network to eliminate routing imbalance and also EPE in 
iMDPL (improved MDPL [16]). This security improvement of 
iMDPL came at an area overhead even greater than WDDL. 
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Fig. 2. WDDL building block. 

Due to the discussed issues, DPL was not considered as a 
good countermeasure specially for FPGA application where 
a designer has very limited freedom over choice of gates, 
placement and routing. Thereafter a couple of DPL counter-
measures were proposed which were able to use BRAM at a 
reasonable cost. One of the BRAM based DPL, is SDDL [5]. 
SDDL used BRAMs at an area overhead of 2× compared 
to the unprotected design. This limited overhead comes from 
the reset feature present in the Xilinx BRAM which can 
reset the output as desired. The reset was used for precharge 
propagation at the output of the Sbox. Another DPL called 
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B C D L (Balanced Cell-based Dual-rail Logic [14]) can also 
use B R A M at an overhead of 4× owing to a synchronization. 
The synchronization signal of B C D L also solves the problem 
of EPE. However both S D D L and B C D L do suffer from 
routing imbalance and therefore need back-end techniques for 
balancing the dual-rail. A E S with T-tables reduces the fanout 
which in a way reduces routing imbalance and makes back-end 
balancing easier [17]. 

I I I . EXPLOITATION OF B R A M TO OPTIMIZE 
COUNTERMEASURES 

In this section, we propose two methods benefited from 
B R A M features for implementing secure circuits at a reason­
able cost. The first method is applied to masking countermea-
sures by exploiting huge memory array and dual-port nature 
of the B R A M . The next method presents a new way (using 
B R A M ) to organize the sequential part of crypto-algorithm in 
a compact and balanced manner. 

A. Optimized Masking Implementation using BRAM 

Several solutions are proposed to mask the non-linear op­
eration (now called Substitution box or Sbox) of a cipher 
but all solutions have a significant overheads. Since we are 
using B R A M in our implementation, we focus on G L U T as 
the solution to mask the Sbox. G L U T is a precomputed table 
which accepts the masked Sbox input (n-bits) and the mask 
(n-bits) as inputs. It returns a masked Sbox output (p-bits) and 
the correction value (p-bits). For example, in DES a 64 × 4 
Sbox is replaced by G L U T of size 4096×8. Similarly for AES , 
the size of the G L U T is 65536×16 for a 256×8 Sbox. Please 
note that in hardware where implementations are parallel in 
general, several instances of a Sbox are used and all of them 
must be masked. In a low-cost FPGA like Xilinx Virtex-5 
LX30, a parallel DES implementation is still possible but not 
for AES . A single A E S G L U T would occupy about 90% of 
the available B R A M , making a parallel A E S implementation 
unfeasible. 

It is possible to design a masking implementation which 
reduces the overhead of G L U T still keeping it resistant to the 
certain higher order of side-channel attacks. Masking schemes 
can reduce the G L U T overhead by reusing the mask and thus 
reducing the overhead from 22n × 2p to 2 n + k × p where 
k < n is the entropy of the mask. In other words, instead 
of using 2n different values to mask the data, only 2k values 
are used. For a proper hardware optimization, the number of 
Sboxes in a cipher N should be a multiple of k. Such an 
implementation generally protects against first-order attack, 
however by application of coding theory, the right set of mask 
can be chosen to resist zero-offset higher-orders (univariate 
attacks targeting a single Sbox). In the following, we consider 
univariate attacks which combine different leakages. 

For simplicity, we restrict ourselves to ciphers (e.g., AES , 
PRESENT) where all the N Sboxes are the same and of 
bijective construction, i.e., of the format 2n × n. Ciphers not 
abiding by these conditions are still possible to protect by this 
scheme with an extra overhead. The details of this masking 

scheme are as follows. Firstly, a set of 2k n-bit mask M 
is chosen. Now both the input and output of each Sbox S 
are masked as: S(x © m¿) © rni+i where m¿ and m i + i are 
consecutive elements of the set M. Actually i and i + 1 are to 
be understood as (i mod 2fc) and ((i+1) mod 2fc) (omitted 
for simplicity of representation). The masked Sbox is now 
denoted as Sm and is of the same size as unmasked S. I f 2k 

is equal to N then all the Sboxes are unique. At each round of 
the algorithm, the Sboxes Sm are reused by circular rotation 
of one position. Let us consider a masked state x' = x © m¿ 
is computed by Smi which is masked with m¿ in the current 
round r. In the next round, x' is processed by Smi+1. Precisely 
the computation done by Smi+1 wi l l be S(x' © m¿) © m¿+ i 
which is simplified to S(x) © mi+i. Similarly in the next 
round, mask m¿+ i is removed at the input of Sbox Smi+1 and 
m¿+2 is applied at the output. I f the Sboxes are not bijective, 
an expansion function should be put in place to make the 
output of Sbox coincide with size of the mask. 

The set of mask M can be public however the M should 
be shifted by a random offset before each encryption. M is 
chosen such that the jth order moment of the conditional 
leakage L?\Z = z given a guess on the sensitive variable 
Z are all the same for j = 1, 2, • • • ,d. Thus only an attack 
of order (d+l) can succeed. Under this constraint, the masks 
set M must be an orthogonal array of strength d [18]. The 
linear operations are masked by a simple XOR operation with 
precomputed constants applied at the end of each round. The 
N x n bit constants are chosen as a function of initial offset 
and can be stored in BRAM as well. It is not always possible 
to find a solution for M which resists at order d. Another 
feature of FPGA which comes handy in such cases is dynamic 
reconfiguration. If it is not possible to find a solution for M 
at order d, designers can opt for several sets of M with order 
< d and update them regularly. Since the mask dependent part 
is inside the memory, modern FPGA kits have specific tools 
which can reconfigure the FPGA to just change the BRAM 
content. Alternately, concurrent read and write technique used 
in [2] can be used by doubling the memory overhead. 
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Fig. 3. Optimized implementation of proposed masking scheme without 
barrel shifters 
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The required rotation in the presented masking scheme 
can be done using barrel shifter. Since the barrel shifters are 
composed of series of multiplexers which are a major source 
of glitches in FPGA, they can cause unintentional leakage. 
Barrel shifters are also resource consuming and affecting 
the performance of the whole system. For example, a 128­
bit barrel shifter would alone acquire around 100 slices in 
Xilinx Virtex-5 LX-30 FPGA. BRAM can be very efficiently 
used in this application to get rid of barrel shifters and thus 
glitches. The scheme to organize the Sboxes and implement 
them in BRAM is shown in Fig. 3. These Sboxes can be 
further compressed by using dual-port memory. All the masked 
Sboxes Sm are placed in each BRAM. From one BRAM to 
another, Sm are laid with an offset of 1. Thus the BRAM has 
an input address of n + k bits where n is the input of the Sm 

and k selects the correct masked Sbox from Sm0 to Sm N . k 
forms the most significant bits of n+k . Thus the memory cost 
is multiplied by 2k but can be small in terms of number of 
blocks. Since all the BRAM contain same Sboxes in different 
order, the dual-port feature can be used to access the same 
data with the corrected offset. 

1) Application to AES-128: Now we apply the presented 
scheme to secure a parallel AES-128 co-processor which 
computes one round per clock cycle. For AES, n = 8 and 
N = 16. We found that it is possible to select a mask M for 
AES which resist up to order d = 3. M is the cosets of the 
linear code [8, 4, 4] and thus k = 4 of 16 mask. We found the 
set 

M= [245, 226, 222, 201, 187, 172, 144, 135, 120, 111, 83, 68, 54, 33, 29, 10], 

should be order 3 resistant. To optimize the scheme we use 
the input register of BRAM as state register. An unmasked 
AES Sbox is 2Kb which makes the composite Sbox (Sm0 

to SmN) of size 16 × 2 = 32Kb. This composite Sbox 
which easily fits in a Xilinx BRAM of 36Kb, now has 12 
bits of address, i.e., 8 bits corresponding to masked byte 
concatenated with 4 bits of offset. Moreover the dual-port 
feature of the BRAM can reuse the same memory space 
with two different ports. Thus N = 16 Sboxes need only 
N/2 = 8 BRAM. The overhead of presented masking scheme 
as compared to unprotected reference AES is shown in Tab. I I . 
The precomputed round unmasking constants are implemented 
in BRAM which consumes 8 extra blocks. The net overhead 
in terms of slices is only 16% with minor loss of frequency. 
Since higher-order attacks of order 4 and greater are difficult to 
realize in practise [19], an order 3 masking with mere overhead 
of 16% is a very practical solution. 

T A B L E I I 
AREA AND FREQUENCY OVERHEAD OF MASKED A E S AFTER 

OPTIMIZATION ON VIRTEX-5. 

Architecture 

Slices 
Registers 
BRAM 

Max. Frequency [MHz] 

Unprotected 

733 
0 
8 

144.3 

Masked 

856 
0 
16 

141.1 

Overhead 

1.16x 
Ox 
2x 

1.02x 

B. Optimized DPL Implementation using BRAM 

DPL involves duplication of each component of the circuit 
to ensure a balanced activity. Duplication of standard logic is 
simple which leads to an overhead of little over twice in terms 
of resources used. However a simple duplication of memory 
leads into exponential increase in overhead. A memory of size 
2n × p, will have an overhead of 2 n + 1 up on duplication. 
This overhead can be reduced to just 2× by using BRAM 
properties. The BRAM overhead is not the only problem. For 
a DPL circuit to have a constant activity in every cycle, a 
precharge spacer should flow through the whole circuit. 

We propose a method to further optimize FPGA imple­
mentations of DPL both in terms of area and security. This 
optimization exploits the following features of BRAM: input 
register, output register with reset, dual-port nature and hard 
macro. A DPL flip-flop is made of 4 flip-flops (Fig. 2), where 
each flip-flops pair (master-slave) is located in the true and 
false rails. The input register can be used for the master flip-
flop and the output register serves as the slave. The use of 
output register also introduces a latency of one clock cycle. 
The extra cycle latency is not a problem in DPL because it aids 
the two-phase DPL protocol. Moreover, the dual-port feature 
allows to implement the true and the false rails of the flip-flop. 
The optimization scheme is depicted in Fig. 4. 
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Fig. 4. Proposed Scheme to implement a DPL SBOX and Flip-Flops in a 
BRAM. 

A very common issue in DPL design is the propagation of 
precharge or the spacer. Since the BRAM will be preceded by 
some combinational circuit, the spacer is easily propagated to 
the input register of the BRAM. To precharge the output regis­
ter, the reset (also known as SSR [5]) feature provides just the 
right solution. Only the combinational gates are implemented 
in FPGA slices. The proposed architecture brings a three-fold 
advantage for implementing DPL design into FPGA. Firstly, 
the logic is not used to implement two-stages (otherwise 
leading to 4×) of the state registers thus significantly reducing 
the overhead. Secondly, the regular structure of BRAM ensures 
proper and balanced placement of the main leakage source of 
the design, i.e., state register. Finally, it is known that leakage 
from a BRAM itself is less than flip-flops in FPGA slices, thus 
enhanced SCA resistance [5]. The balanced placement of XOR 
gates can be ensured by using LUT6 2 from Xilinx to place 
the whole dual-rail cells (G and G in Fig. 2). Balancing routing 
in FPGAs is challenging, because FPGA architecture and 
CAD tools are not designed for these weird DPL structures. 
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But some amount of balancing can be achieved by proper 
placement. Balancing routing is another area of research, and 
repair techniques like proposed in [15] can repair routing with 
extra effort, but it falls out of the scope of this paper. 

1) Application to AES-128: To test our proposed optimiza­
tion on a real DPL circuit, we had two choices: SDDL and 
BCDL. To our knowledge, SDDL and BCDL, are the only 
DPL subsets proposed which are capable of using BRAM at 
reasonable cost. Since SDDL suffers from security issue like 
EPE, we choose to apply our optimization on BCDL. The 
target algorithm is AES-128 using T-tables because T-tables 
merge SubBytes and MixColumns function in a precomputed 
table, thus reducing the routing fanout. Precisely, we use the 
implementation of AES-128 protected by BCDL as described 
in [17]. Applying our technique to further optimize BCDL, 
BRAMs and flip-flops are merged into a single entity. 

T A B L E I I I 
AREA AND FREQUENCY OVERHEAD OF B C D L FOR A E S MODULE 
EXCLUDING K E Y EXPANSION AFTER OPTIMIZATION ON VIRTEX-5. 

Architecture 

Slices 
Registers 
BRAM 

Max. Frequency [MHz] 

Unprotected 

176 
0 
8 

258 

BCDL 

1128 
0 
16 

283 

Overhead 

6.4x 
Ox 
2x 

0.911x 

The overhead of protecting A E S with B C D L after applying 
our optimization is given in Tab. I I I . Both the unprotected A E S 
and its B C D L version implement state registers in B R A M . 
The number of slices is increased by roughly 6.4x as X O R in 
B C D L is costly as also pointed in the original paper [17]. It 
is limited to 1 -LUT per bit of X O R . The BRAMs are simply 
doubled, while the performance is improved due to the usage 
of output register of the B R A M . As BRAMs are a hard-macro, 
balanced placement of the sequential part of A E S (128*4 
bits registers) is ensured without placement constraints. D P L 
balancing has been checked by the post P & R i.e. absolutely 
close to on-device conditions. Besides, B C D L is free of glitch 
by design. We do a proof of concept study to quantify the 
gain of balanced placement and keep routing untouched for 
the two designs to have a fair evaluation. 

I V . SECURITY A N A L Y S I S 

The previous sections dealt with the implemetation aspect 
of the proposed optimizations to masking and D P L . Now 
we analyze the implemented countermeasures from a security 
aspect with respect to S C A . 

A. Attack Metrics and Experimental Platform 

Let us denote a random variable L representing the side-
channel leakage (e.g., power consumed) while computing 
Z = f(X.K). K is the n-bit secret key and X is a variable 
quantity known to the attacker. Time is another parameter 
not shown. A standard S C A tries to find correct key k* for 
which Z and L have maximum dependency. Since L is noisy, 
thus several measurements of Z are required to estimate L. 
For hardware implementation, the leakage L depends on the 
Hamming distance (HD) model. It expresses at first-order the 
power consumption of C M O S gates in electronic devices as it 

corresponds to signal transitions. The leakage can be expressed 
as: 

L = HD(Z, R) + N = HW(Z © R) + N, 

where N is the noise, and R is the reference state. HW(X) 
is the Hamming Weight function which returns the number of 
bits set to 1 in binary representation of X. 

For SCA analysis, we use Correlation Power Analysis 
(CPA [1]) as a distinguisher. CPA is a computation of the 
Pearson Correlation Coefficient p between the side-channel 
leakage T and the expectation of the leakage model L knowing 
Z, noted E(L|Z) , which can be estimated as: 

,r„ E s¿Lo(*¿ ~ Mr) • (E(L\Z = z¿) - ME(-LIZ)) 
p(l , (L\Z)) = , 

®T ' ^E(L\Z) 

where a and /x denote the standard deviation and the 
mean respectively, and n is the traces count. To analyze the 
efficiency of SCA, two metric are used. The first metric is 
Minimum Traces to Disclosure (MTD), i.e., the minimum 
number of measurements needed to perform a successful 
attack. The other metric used is called guessing entropy which 
generally is useful when an attack is not successful. Guessing 
entropy gives the average number of key hypothesis to test to 
reveal the correct key. 

We test our designs on Xilinx Virtex-5 FPGA soldered on 
a SASEBO-GII platform. For SCA, traces are acquired on 
a 54855 Infiniium Agilent oscilloscope with a bandwidth of 
6 GHz and a maximal sampling rate of 20 GSample/s, using 
an antenna of the HZ-15 kit from Rohde & Schwarz. Since 
the analysis results can widely vary from one measurement 
setup to another, we always use a reference implementation to 
give readers an idea of the security gain achieved. 

B. Security Analysis of Masked AES 

To develop the leakage-function of masking we refer back 
to Eq. (1). For a first-order mask, the prediction function z \-> 
E ( H W ( Z © M ) + HW(M)\Z = z) reduces to aconstantand 
makes simple SCA attacks impossible. To exploit the leakage 
from masked implementation zero-offset SCA [ ] are often 
used. These attacks are based on the principle that higher-
order moments are related to the key. For a masking of order 
d, the d+1 order moment can be key-dependant. Theoretically, 
p(Td+1 ,E(L\Z)) should result in a successful attack, where 
T are the centered side-channel traces. However, as the order 
d increases, CPA becomes less practical because the noise in 
the traces is amplified. Moradi in [ ] suggests that attacks of 
order 5 and greater can be considered far from practise. We 
acquired 150,000 side channel traces (averaged 16 times) for 
the masked implementation explained in Sect. I I I -A1. 

The presented masking is a special case where the number 
of mask is 16 and the mask set is public. The secret is the 4-
bit offset which is not known to the attacker. In this case, the 
leakage function can be written as HW(Z © M)d, d being 
the power at which the attacker raises the centered traces. 
The prediction function is z \-> E(HW(z © M)d), i.e., the 
leakage to the power d averaged over the whole set M for all 



(a) 

(b) 
Fig. 5. (b) Variance of the predicted leakage for first three Sboxes at (a) 
order 1, 2 and 3; (b) Order 4 leakage L 

offsets. We tested the values of possible predicted leakage (i.e. 
E((z M)d)) for 256 possible subkeys of two chosen Sbox for 
order 1-4. As expected, the predictions came out to be constant 
for order 1, 2 and 3 which renders the attack impractical. Since 
the actual prediction is constant, its Hamming weight will also 
be constant. Only at order 4, the predictions vary from each 
other as shown in Fig. 5 (b) which points towards possibility of 
an attack. In Fig. 5 (b), it is normal to have a higher variance 
of prediction in Sbox 0 as it covers only 163 of the 256 value 
due to absence of ShiftRows. Sbox 1 and 2 cover all 256 
values and thus show lower variance. We tried a 4-th order 
attack on the set of acquired traces which failed probably due 
to limited number of traces or high noise at order 4. Thus the 
masking scheme is shown to be compact and secure at least 
up to order 3. 

C. Security Analysis of DPL AES 

Theoretically, a DPL design should be leakage-free. DPL is 
a special case where any two evaluations are separated by a 
precharge phase. In a well-balanced DPL circuit, along with 
every Z , a Z is also computed, which can be modelled as: 

L = HW(Z) + HW(Z) + N . 

Ideally, HW(Z)+HW(Z) is a constant which reduces the 
leakage L to just noise. Now if we also consider placement 
and routing imbalance, Z and Z do not occur simultaneously. 
Thus for short periods of time, L depends either on HW(Z) 
or HW(Z), which reduces the model to HW(Z) . 

(a) 

(b) 
Fig. 6. Dual-rail timing bias in (a) B C D L O L D , (b) B C D L N E W 

Now we try to quantify the security improvement brought 
due to balanced placement of B C D L by the proposed opti­
mization. As previously stated, net delay bias has significant 
impacts on the balance between the dual rails of D P L logic. 
We achieved better routing balance between the nets for the 
security sensitive nets in the optimized B C D L (now referred 
as B C D L NEW) as compared to original B C D L (now referred 
as B C D L O L D ) version. We would like to remind the readers 
that the B C D L O L D implements the state register in FPGA 
slices. Fig. 6 depicts net delays and the differences between 
each of the 128 pairs of input nets to the flip-flop (same as 
B R A M input in B C D L NEW) . We choose these nets because 
they accumulate the maximum delay and therefore are most 
sensible to bias. Values for T and F rails are outlined by 
different colours. B C D L N E W has a smaller delay difference 
as compare to B C D L O L D . Averaged delay bias from the 
old B C D L to the new one is reduced roughly from 0.25ns to 
0.12ns, roughly a reduction factor of 1.48. 

Further we analyzed the two architectures using CPA over 
100,000 traces which were averaged 16 times. The result is 
shown in Fig. 7. The Sboxes with M T D more than 100,000 
traces indicate insufficient traces for a successful attack. So we 
plot the guessing entropy of the correct key in Fig. 7(b). It can 
be simply deduced from the plot that with the optimization, 
the resistance has been improved. We cannot directly connect 
the timing result with the CPA result because of lack of precise 
information on the physical properties of the device. However, 
both the timing and CPA results favour the improved B C D L 
( B C D L NEW) . 

V . CONCLUSIONS AND PERSPECTIVES 

In this paper, we investigated the power of BRAMs available 
in FPGAs to implement intrinsic countermeasures. BRAMs 
possess many features which can aid the designers of cryp­
tographic circuits. These features like presence of registers at 
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Fig. 7. (a) MTD and (b) Guessing entropy for the two BCDL circuits after 
CPA on 100k traces 

input and output, ability to reset the output register, dual-port 
nature can be very well exploited. Also the regular structure 
of B R A M (hard-macro) saves the designers from applying 
specific placement constraints. We exploit these features to 
propose compact and secure implementation of existing coun-
termeasures (masking and DPL) . The optimizations have been 
applied on A E S co-processor and tested on Xilinx Virtex-5 
FPGA. Their security analyses reveal positive results. The 
masking countermeasure had an overhead of only 16% and 
was shown to be secure for the chosen model, thanks to 
the removal of barrel shifters. In the D P L countermeasure, 
the whole sequential part of A E S that is also the main 
source of leakage was packed inside the B R A M with balanced 
placement by design. To our knowledge, the implementations 
proposed are the most compact of the state-of-the-art. Thus 
security is a another parameters which motivates integration 
of ample B R A M resourses into FPGA chips. 

Finally we would like to conclude that the security of a 
countermeasures depends specific leakage model of the device. 
Therefore it should be interesting to research formal methods 
to characterize leakage models for the given device. 
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