50,817 research outputs found

    Low-Dimensional Topology of Information Fusion

    Full text link
    We provide an axiomatic characterization of information fusion, on the basis of which we define an information fusion network. Our construction is reminiscent of tangle diagrams in low dimensional topology. Information fusion networks come equipped with a natural notion of equivalence. Equivalent networks `contain the same information', but differ locally. When fusing streams of information, an information fusion network may adaptively optimize itself inside its equivalence class. This provides a fault tolerance mechanism for such networks.Comment: 8 pages. Conference proceedings version. Will be superceded by a journal versio

    A Bayesian graph embedding model for link-based classification problems

    Get PDF
    In recent years, the analysis of human interaction data has led to the rapid development of graph embedding methods. For link-based classification problems, topological information typically appears in various machine learning tasks in the form of embedded vectors or convolution kernels. This paper introduces a Bayesian graph embedding model for such problems, integrating network reconstruction, link prediction, and behavior prediction into a unified framework. Unlike the existing graph embedding methods, this model does not embed the topology of nodes or links into a low-dimensional space but sorts the probabilities of upcoming links and fuses the information of node topology and data domain via sorting. The new model integrates supervised transaction predictors with unsupervised link prediction models, summarizing local and global topological information. The experimental results on a financial trading dataset and a retweet network dataset demonstrate that the proposed feature fusion model outperforms the tested benchmarked machine learning algorithms in precision, recall, and F1-measure. The proposed learning structure has a fundamental methodological contribution and can be extended and applied to various link-based classification problems in different fields

    Quantum Statistics and Spacetime Topology: Quantum Surgery Formulas

    Full text link
    To formulate the universal constraints of quantum statistics data of generic long-range entangled quantum systems, we introduce the geometric-topology surgery theory on spacetime manifolds where quantum systems reside, cutting and gluing the associated quantum amplitudes, specifically in 2+1 and 3+1 spacetime dimensions. First, we introduce the fusion data for worldline and worldsheet operators capable of creating anyonic excitations of particles and strings, well-defined in gapped states of matter with intrinsic topological orders. Second, we introduce the braiding statistics data of particles and strings, such as the geometric Berry matrices for particle-string Aharonov-Bohm, 3-string, 4-string, or multi-string adiabatic loop braiding process, encoded by submanifold linkings, in the closed spacetime 3-manifolds and 4-manifolds. Third, we derive new `quantum surgery' formulas and constraints, analogous to Verlinde formula associating fusion and braiding statistics data via spacetime surgery, essential for defining the theory of topological orders, 3d and 4d TQFTs and potentially correlated to bootstrap boundary physics such as gapless modes, extended defects, 2d and 3d conformal field theories or quantum anomalies. This article is meant to be an extended and further detailed elaboration of our previous work [arXiv:1602.05951] and Chapter 6 of [arXiv:1602.05569]. Our theory applies to general quantum theories and quantum mechanical systems, also applicable to, but not necessarily requiring the quantum field theory description.Comment: 35 pages, 3d and 4d figures, 3 tables. An extended sequel and further detailed elaboration of [arXiv:1602.05951] and Chapter 6 of Thesis [arXiv:1602.05569] in 201

    Distributing the Kalman Filter for Large-Scale Systems

    Full text link
    This paper derives a \emph{distributed} Kalman filter to estimate a sparsely connected, large-scale, n−n-dimensional, dynamical system monitored by a network of NN sensors. Local Kalman filters are implemented on the (nl−n_l-dimensional, where nl≪nn_l\ll n) sub-systems that are obtained after spatially decomposing the large-scale system. The resulting sub-systems overlap, which along with an assimilation procedure on the local Kalman filters, preserve an LLth order Gauss-Markovian structure of the centralized error processes. The information loss due to the LLth order Gauss-Markovian approximation is controllable as it can be characterized by a divergence that decreases as L↑L\uparrow. The order of the approximation, LL, leads to a lower bound on the dimension of the sub-systems, hence, providing a criterion for sub-system selection. The assimilation procedure is carried out on the local error covariances with a distributed iterate collapse inversion (DICI) algorithm that we introduce. The DICI algorithm computes the (approximated) centralized Riccati and Lyapunov equations iteratively with only local communication and low-order computation. We fuse the observations that are common among the local Kalman filters using bipartite fusion graphs and consensus averaging algorithms. The proposed algorithm achieves full distribution of the Kalman filter that is coherent with the centralized Kalman filter with an LLth order Gaussian-Markovian structure on the centralized error processes. Nowhere storage, communication, or computation of n−n-dimensional vectors and matrices is needed; only nl≪nn_l \ll n dimensional vectors and matrices are communicated or used in the computation at the sensors
    • …
    corecore