359 research outputs found

    Low-Cost Transceiver Architectures for 60 GHz Ultra Wideband WLANs

    Get PDF
    Millimeter-wave multiport transceiver architectures dedicated to 60 GHz UWB short-range communications are proposed in this paper. Multi-port circuits based on 90° hybrid couplers are intensively used for phased antenna array, millimeter-wave modulation and down-conversion, as a low-cost alternative to the conventional architecture. This allows complete integration of circuits including antennas, in planar technology, on the same substrate, improving the overall transceiver performances

    Ultra-Wideband RF Transceive

    Get PDF

    60 GHz MAC Standardization: Progress and Way Forward

    Full text link
    Communication at mmWave frequencies has been the focus in the recent years. In this paper, we discuss standardization efforts in 60 GHz short range communication and the progress therein. We compare the available standards in terms of network architecture, medium access control mechanisms, physical layer techniques and several other features. Comparative analysis indicates that IEEE 802.11ad is likely to lead the short-range indoor communication at 60 GHz. We bring to the fore resolved and unresolved issues pertaining to robust WLAN connectivity at 60 GHz. Further, we discuss the role of mmWave bands in 5G communication scenarios and highlight the further efforts required in terms of research and standardization

    Millimeter-Wave Ultra-Wideband Six-Port Receiver Using Cross-Polarized Antennas

    Get PDF
    This paper presents a new low-cost millimeter-wave ultra-wideband (UWB) transceiver architecture operating over V-band from 60 to 64 GHz. Since the local oscillator (LO) power required in the operation of six-port receiver is generally low (compared to conventional one using diode mixers), the carrier recovery or LO synchronization is avoided by using second transmission path and cross-polarized antennas. The six-port model used in system simulation is based on S-parameters measurements of a rectangular waveguide hybrid coupler. The receiver architecture is validated by comparisons between transmitter and receiver bit sequences and bit error rate results of 500 Mb/s pseudorandom QPSK signal

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01
    • 

    corecore