187 research outputs found

    Turbo-Coded Adaptive Modulation Versus Space-Time Trellis Codes for Transmission over Dispersive Channels

    No full text
    Decision feedback equalizer (DFE)-aided turbocoded wideband adaptive quadrature amplitude modulation (AQAM) is proposed, which is capable of combating the temporal channel quality variation of fading channels. A procedure is suggested for determining the AQAM switching thresholds and the specific turbo-coding rates capable of maintaining the target bit-error rate while aiming for achieving a highly effective bits per symbol throughput. As a design alternative, we also employ multiple-input/multiple-output DFE-aided space–time trellis codes, which benefit from transmit diversity and hence reduce the temporal channel quality fluctuations. The performance of both systems is characterized and compared when communicating over the COST 207 typical urban wideband fading channel. It was found that the turbo-coded AQAM scheme outperforms the two-transmitter space–time trellis coded system employing two receivers; although, its performance is inferior to the space–time trellis coded arrangement employing three receivers. Index Terms—Coded adaptive modulation, dispersive channels, space–time trellis codes

    Air Interface for Next Generation Mobile Communication Networks: Physical Layer Design:A LTE-A Uplink Case Study

    Get PDF

    The interplay between mapping/demapping and non-binary LDPC coding in MIMO wireless communication systems

    Get PDF
    Recently, the need for innovative services available for the end users has led to an increasing demand of higher throughputs of wireless systems. On the other hand higher throughput means wider bandwidth, so that channel selectivity and fading might be a severe challenge to combat in order to ensure high level of Quality of Service (QoS). In this scenario one of the possible approach to increase the system throughput is the use of multiple antennas, both at the transmitter and the receiver side. Instead the typical manner to combat channel effects is to employ powerful channel coding schemes, which target the mitigation of these propagation effects. This work follows this approach combining the MIMO techniques jointly with the powerful channel coding scheme of non-binary LDPC. The expression "non-binary" refers to the fact that these codes are defined over high order Galois Field. These codes have been researched in the literature to achieve higher error protection than conventional binary codes for transmission over different noisy channels. The main novelty of this work is related to the mapping and demapping of the non-binary information. Typically the main contributions in the literature focus on the low complexity decoders, whilst the demapping complexity is neglected. However, the demapping complexity might become a real bottleneck in the global receiver complexity, so that we decide to investigate this topic. A strategy is devised to guarantee an efficient mapping at the transmitter, together with an algorithm for low complexity soft demapping at the receiver. The proposed solutions target the best trade-off between performance and complexity, for any combination of the Galois field order, QAM constellation order, and MIMO scheme

    Code-aided iterative techniques in OFDM systems

    Get PDF
    Inspired by the 'turbo principle', this thesis deals with two iterative technologies in orthogonal frequency division multiplexing (OFDM) systems: iterative interference cancelation in space-frequency block coded OFDM (SFBC-OFDM) and iterative channel estimation/ tracking in OFDM Access (OFDMA) with particular application to Worldwide Inter-operability for Microwave Access (WiMAX) systems. The linear matched filter (MF) decoding in SFBC-OFDM is simple yet obtains maximumlikelihood (ML) performance based on the assumption that the channel frequency response remains constant within a block. However, frequency response variations gives rise to inter-channel interference (lCI). In this thesis, a parallel interference cancelation (PIC) approach with soft iterations will be proposed to iteratively eliminate ICI in G4 SFBC-OFDM. Furthermore, the information from outer convolutional decoder is exploited and fed back to aid the inner PIC process to generate more accurate coded bits for the convolutional decoder. Therefore, inner and outer iterations work in a collaborative way to enhance the performance of interference cancelation. Code-aided iterative channel estimation/tracking has the ability of efficiently improving the quality of estimation/tracking without using additional pilots/training symbols. This technique is particularly applied to OFDMA physical layer ofWiMAX systems according to the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard. It will be demonstrated that the performance of the pilot-based channel estimation in uplink (UL) transmission and the channel tracking based on the preamble symbol in downlink (DL) transmission can be improved by iterating between the estimator and the detector the useful information from the outer convolutional codes. The above two issues will be discussed in Chapter 5 and Chapter 6, and before this, Chapter 2 to Chapter 4 will introduce some background techniques that are used throughout the thesis

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs
    corecore