3,063 research outputs found

    Joint Transceiver Design Algorithms for Multiuser MISO Relay Systems with Energy Harvesting

    Full text link
    In this paper, we investigate a multiuser relay system with simultaneous wireless information and power transfer. Assuming that both base station (BS) and relay station (RS) are equipped with multiple antennas, this work studies the joint transceiver design problem for the BS beamforming vectors, the RS amplify-and-forward transformation matrix and the power splitting (PS) ratios at the single-antenna receivers. Firstly, an iterative algorithm based on alternating optimization (AO) and with guaranteed convergence is proposed to successively optimize the transceiver coefficients. Secondly, a novel design scheme based on switched relaying (SR) is proposed that can significantly reduce the computational complexity and overhead of the AO based designs while maintaining a similar performance. In the proposed SR scheme, the RS is equipped with a codebook of permutation matrices. For each permutation matrix, a latent transceiver is designed which consists of BS beamforming vectors, optimally scaled RS permutation matrix and receiver PS ratios. For the given CSI, the optimal transceiver with the lowest total power consumption is selected for transmission. We propose a concave-convex procedure based and subgradient-type iterative algorithms for the non-robust and robust latent transceiver designs. Simulation results are presented to validate the effectiveness of all the proposed algorithms

    Eigen-Based Transceivers for the MIMO Broadcast Channel with Semi-Orthogonal User Selection

    Full text link
    This paper studies the sum rate performance of two low complexity eigenmode-based transmission techniques for the MIMO broadcast channel, employing greedy semi-orthogonal user selection (SUS). The first approach, termed ZFDPC-SUS, is based on zero-forcing dirty paper coding; the second approach, termed ZFBF-SUS, is based on zero-forcing beamforming. We first employ new analytical methods to prove that as the number of users K grows large, the ZFDPC-SUS approach can achieve the optimal sum rate scaling of the MIMO broadcast channel. We also prove that the average sum rates of both techniques converge to the average sum capacity of the MIMO broadcast channel for large K. In addition to the asymptotic analysis, we investigate the sum rates achieved by ZFDPC-SUS and ZFBF-SUS for finite K, and show that ZFDPC-SUS has significant performance advantages. Our results also provide key insights into the benefit of multiple receive antennas, and the effect of the SUS algorithm. In particular, we show that whilst multiple receive antennas only improves the asymptotic sum rate scaling via the second-order behavior of the multi-user diversity gain; for finite K, the benefit can be very significant. We also show the interesting result that the semi-orthogonality constraint imposed by SUS, whilst facilitating a very low complexity user selection procedure, asymptotically does not reduce the multi-user diversity gain in either first (log K) or second-order (loglog K) terms.Comment: 35 pages, 3 figures, to appear in IEEE transactions on signal processin

    A High-Diversity Transceiver Design for MISO Broadcast Channels

    Full text link
    In this paper, the outage behavior and diversity order of the mixture transceiver architecture for multiple-input single-output broadcast channels are analyzed. The mixture scheme groups users with closely-aligned channels and applies superposition coding and successive interference cancellation decoding to each group composed of users with closely-aligned channels, while applying zero-forcing beamforming across semi-orthogonal user groups. In order to enable such analysis, closed-form lower bounds on the achievable rates of a general multiple-input single-output broadcast channel with superposition coding and successive interference cancellation are newly derived. By employing channel-adaptive user grouping and proper power allocation, which ensures that the channel subspaces of user groups have angle larger than a certain threshold, it is shown that the mixture transceiver architecture achieves full diversity order in multiple-input single-output broadcast channels and opportunistically increases the multiplexing gain while achieving full diversity order. Furthermore, the achieved full diversity order is the same as that of the single-user maximum ratio transmit beamforming. Hence, the mixture scheme can provide reliable communication under channel fading for ultra-reliable low latency communication. Numerical results validate our analysis and show the outage superiority of the mixture scheme over conventional transceiver designs for multiple-input single-output broadcast channels.Comment: The inner region is evaluated. The single-group SIC performance is evaluate
    • …
    corecore