58,118 research outputs found

    Low-Complexity Learning for Dynamic Spectrum Access in Multi-User Multi-Channel Networks

    Get PDF
    Department of Computer Science and EngineeringIn cognitive radio Networks (CRNs), dynamic spectrum access allows (unlicensed) users to identify and access unused channels opportunistically, thus improves spectrum utility. In this paper, we address the user-channel allocation problem in multi-user multi-channel CRNs without a prior knowledge of channel statistics. A reward of a channel is stochastic with unknown distribution, and statistically different for each user. Each user either explores a channel to learn the channel statistics, or exploits the channel with the highest expected reward based on information collected so far. Further, a channel should be accessed exclusively by one user at a time due to a collision. Using multi-armed bandit framework, we develop provably efficient solutions whose computational complexities are linear to the number of users and channels.ope

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    corecore