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Abstract

In cognitive radio Networks (CRNs), dynamic spectrum access allows (unlicensed) users to

identify and access unused channels opportunistically, thus improves spectrum utility. In this

paper, we address the user-channel allocation problem in multi-user multi-channel CRNs without

a prior knowledge of channel statistics. A reward of a channel is stochastic with unknown

distribution, and statistically different for each user. Each user either explores a channel to

learn the channel statistics, or exploits the channel with the highest expected reward based on

information collected so far. Further, a channel should be accessed exclusively by one user at

a time due to a collision. Using multi-armed bandit framework, we develop provably efficient

solutions whose computational complexities are linear to the number of users and channels.
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I Introduction

Since license-based spectrum management has suffered from low spectrum utilization, cognitive

radio networks (CRNs) have attracted much attention as a promising solution to current spec-

trum inefficiency [1]. In CRNs, unlicensed users (or secondary users) can access unused channels

that are licensed to primary users. Dynamic spectrum access allows (secondary) users to identify

idle channels and use them opportunistically [2, 3].

We consider multi-user multi-channel CRNs where channels are orthogonal and independent

of each other. Characteristic of a channel is represented by a reward, i.e., a good channel implies

a high expected reward1. A reward of a channel is stochastic with unknown distribution, and

statistically different for each user. We assume a slotted-time system where each user can access

at most one channel at a time slot. Although the channel information is unknown to users, users

can learn from their experiences. Every time each user either explores a channel to estimate

its expected reward value, or exploits the channel with the highest expected reward based on

information so far. Hence, a user faces the well-known exploration-exploitation tradeoff.

This can be formulated as a class of multi-armed bandit (MAB) problems [4–7], which are a

framework for sequential decision problems considering the exploration-exploitation tradeoff. In

single-user MAB problems, a player (or a user) chooses an arm (i.e., a channel) at each time slot,

and receives a reward from the chosen arm. An MAB policy decides which arm to play to get

the best (total) reward given observations in previous time slots. The performance metric for

evaluating a policy is regret, which is the accumulated difference between the highest expected

reward and that achieved by the policy. In stochastic MAB problems, the rewards are assumed

to be an i.i.d. process with unknown distribution and bounded support. The authors of [4] have

shown that the regret of stochastic MAB grows at least logarithmically over time. In [5], the

authors have proposed an index-based policy for stochastic MAB using upper confidence bound

(UCB) called UCB1, and shown that the expected regret of UCB1 algorithm grows at most

logarithmically. On the other hand, adversarial MAB problems consider non-stochastic rewards.

In [6], the authors have proposed a policy for adversarial MAB called EXP3 of which regret is

sub-linear. In [7], the authors have suggested that decision making problems in CR networks

can be formulated using the MAB framework.

In multi-user scenarios where multiple users access channels at the same time, a channel

should be accessed exclusively by one user at a time due to a collision. This multi-user scenario

can be formulated as combinatorial MAB problems [8–16], where the total reward received by

playing multiple arms is either the sum of rewards from played arms (linear rewards) or a function

of reward vector (non-linear rewards). In [9], a combinatorial MAB problem with non-linear

rewards is studied and applied to several applications such as online advertising. In [10], the

authors consider a combinatorial MAB problem with linear rewards and apply it to applications

such as maximum weighted matching and shortest path. In this paper, we are interested in a
1For an example, a reward can be signal-to-noise rate or the bandwidth of the channel.
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combinatorial (stochastic) MAB problem with linear rewards in multi-user scenarios.

The authors of [11–13] have proposed distributed solutions to MAB problem when the reward

from an arm is statistically identical for all the players. They showed that the regret grows

logarithmically over time under the proposed policies. For the scenarios where the reward from

an arm is statistically different for each player, the problem can be modeled as a weighted

bipartite graph with two disjoint sets of players and arms, and the objective is to find an

optimal matching (i.e., a maximum weighted matching) with expected reward as weight on edge

(player, arm) [14–16]. In this case, the regret of a policy is defined as accumulated total reward

achieved by playing an optimal matching minus that achieved by the policy. In [14], the authors

have proposed a centralized algorithm, under which a central agent finds a maximum weighted

matching with UCB indices at each time using Hungarian algorithm, whose computational

complexity is O(NK(N+K)3) where N andK are the number of players and arms, respectively.

In [15], the authors have proposed a decentralized algorithm, under which players participate

to the Bertsekas auction algorithm whenever it needs to recompute a matching. It converges

to an optimal matching with UCB index with convergence time of O(N2 ·maxi,k µi,k/ε), where

µi,k is the expected reward of arm k for user i and ε > 0. Although the policies of [14, 15]

achieve logarithmic growth of the regret, they have high-order computational complexity to

find the maximum weighted matching. In [16], the authors are interested in finding a stable

and orthogonal matching rather than an optimal matching. Although the proposed distributed

algorithm has low computational complexity O(K), it does not guarantee the logarithmic growth

of the expected regret.

In this paper, we study the multi-user MAB problem where reward statistics are different for

each user-channel pair. Each user has no prior knowledge about channel rewards, and estimates

the mean reward of each channel by exploring it. A channel can be accessed by at most one

user at a time, otherwise a collision occurs and none gets reward for the channel. The procedure

of our algorithms are motivated by [17, 18] in that a time slot is divided into a scheduling slot

to control collisions and a transmission slot to access the chosen channels. We develop low-

complexity learning algorithms for opportunistic spectrum access in multi-user multi-channel

cognitive radio networks. To the best of our knowledge, these are the first algorithms that have

linear complexity and achieve asymptotic optimality. Our contribution can be summarized as

follows.

• We develop linear-complexity solutions to multi-user multi-armed bandit problems.

• We show that our proposed algorithms achieve logarithmic growth of the total expected

regret with respect to time t.

• We verify the performance of our algorithms through simulations.

The rest of paper is organized as follows. In Section II, we describe the system model and

problem formulation. In Sections III, we propose low-complexity learning algorithm which can
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Figure 1: System model with complete bipartite graph. The maximum weighted matching is

marked by circles.

be applied not only to bipartite graph but also to general graph, and evaluate its performance.

In Section IV, we propose another low-complexity algorithm which takes the advantage of a

property of bipartite graph, thus can further improve the performance. In Section V, we verify

our results through simulations, and in Section VI, we conclude our work.

II System Model

We consider a cognitive radio network of N (secondary) users and K orthogonal channels with

K ≥ N . We assume a slotted-time system, where each user can access at most one channel

in a time slot. If more than one user accesses the same channel at the same time, then all the

conflicting users receive no reward from that channel due to a collision. At time slot t, if user

i accesses channel k exclusively, then it receives a reward (e.g., SNR or bandwidth) denoted by

Xi,k(t), which is a random variable that is i.i.d. across time and has an arbitrary distribution

with bounded support. Without loss of generality, we assume that Xi,k(t) lies in between 0

and 1 with a mean µi,k. We assume that each user has no priori knowledge of Xi,k(t), and

can only observe the returned reward. Let Zi,k(t) denote the actual reward that user i receives

from channel k at time t. If user i accesses channel k at time slot t without a collision, then

Zi,k(t) = Xi,k(t), and otherwise Zi,k(t) = 0.

Let K = {1, ...,K} denote the set of channels (or equivalently the set of actions of users),

and xi(t) ∈ K denote an action of user i at time slot t, i.e., user i accesses channel xi(t) at time

slot t. We denote its vector x(t) as schedule at time t. Then, the history of users i by time slot

t is Hi(t) = {(xi(1), Zi,xi(1)(1)), ..., (xi(t), Zi,xi(t)(t))} with Hi(0) = ∅. A policy πi = (πi(t))
∞
t=1

for user i is a sequence of maps πi(t) : Hi(t − 1) → K that specifies the channel to access at
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time slot t given the history seen by the user i. Let M be the set of feasible schedules such

that M := {a = (a1, ..., aN ) : ai ∈ K, ai 6= aj for i 6= j}, which is equivalent to the set of all

(maximal) matchings in bipartite graph G = (N ∪ K, E), where N and K are the sets of users

and channels, respectively, and E is the set of edges (i, k) for all i ∈ N and k ∈ K. Let a∗

denote an optimal matching (i.e., an maximum weighted matching in G) with expected rewards

µi,k as weights on edges such that

a∗ ∈ arg max
a∈M

N∑
i=1

µi,ai . (1)

Fig. 1 illustrates an example of our model with complete bipartite graph G = (N ∪ K, E).

There are two users U1 and U2 (N = 2), and three channels C1, C2, and C3 (K = 3). The

matrix shows the expected rewards of each user-channel pair, and the optimal matching is

a∗ = (a∗1, a
∗
2) = (1, 3).

Since µi,k are unknown parameters, a policy π cannot achieve the optimal performance every

time. We consider a regret, which is the difference between the total reward from an optimal

matching and that from the non-optimal matching. Let Rπ(T ) denote the expected total regret

by time slot T under policy π:

Rπ(T ) := T
N∑
i=1

µi,a∗i −
∑
a∈M

T∑
t=1

N∑
i=1

E [Xi,ai(t)I{x(t) = a}] , (2)

where I{·} is an indicator function which is 1 if the event in {·} is true, and 0, otherwise. The

objective is to minimize the expected total regret. It is known that the logarithmic growth of

expected regret with respect to time is asymptotically optimal [8].

III Uniform Sampling Algorithm

In this section, we develop low-complexity learning algorithm which can be applied to combi-

natorial MAB with more general graph as well as bipartite graph. We first describe our low-

complexity scheme, and then we evaluate the performance of our proposed scheme and show

that it is asymptotically optimal.

3.1 Uniform sampling algorithm

We assume that reward Xi,k(t) ∈ [0, 1] of channel k to user i is a normalized i.i.d. random

process. Initially, mean reward µi,k is unknown but user i can learn the mean reward of channel

k by empirically trying the channel and observing the returned rewards. Let µ̂i,k(t) denote the

empirical mean of returned rewards for (user i, channel k) pair by time slot t, and let τ̂i,k(t)

denote the number of times that user i is successfully matched with channel k by time slot t. If

τ̂i,k(t) → ∞ as t → ∞, then µ̂i,k → µi,k from the law of large numbers. Let x(t) ∈ M denote

the schedule at time slot t, where xi(t) indicates the channel that is matched with user i. At
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Transmission slotScheduling slot

Control phase Decision phase

Figure 2: Structure of a time-slot.

the end of time slot t, user i updates µ̂i,k(t) and τ̂i,k(t) for channel k = xi(t) based on returned

reward Xi,k(t) as

µ̂i,k(t) =


µ̂i,k(t−1)τ̂i,k(t−1)+Xi,k(t)

τ̂i,k(t−1)+1 , for k = xi(t)

µ̂i,k(t− 1), for k 6= xi(t).
(3)

τ̂i,k(t) =

τ̂i,k(t− 1) + 1, for k = xi(t)

τ̂i,k(t− 1), for k 6= xi(t).
(4)

For user i’s channel k, we assign an UCB index

Ii,k(t) := µ̂i,k(t− 1) +

√
(N + 1) log t

[τ̂i,k(t− 1)]+
, (5)

where [·]+ = max{1, ·}. It is known that, under single user scenario (N = 1), if the user plays the

channel with the highest value of UCB index at each time slot, the regret grows logarithmically

with respect to time [5]. Under multi-user scenarios, finding the maximum weighted matching

with UCB indices at each time slot achieves asymptotic optimality, which, however, has high-

order computational complexity [14]. We tackle the problem by developing a linear-complexity

algorithm that guarantees the logarithmic growth of the regret.

We start with the description of time structure which is motivated by [17,18]. A time slot is

divided into a scheduling slot and a transmission slot, and the scheduling slot is further divided

into a control phase and a decision phase as shown in Fig. 2. Now we explain our Uniform

sampling algorithm (also see Algorithm 1).

• In the control phase (lines 1 of Algorithm 1), we select a matching m(t) ∈M uniformly

at random, which is called as a candidate matching.

• In the decision phase (line 2-3 of Algorithm 1), we compute the total sum of chosen

UCB indices from candidate matching m(t) and that of the previous schedule x(t − 1),

and select the one with higher value as new schedule x(t). Let V (a; I(t)) :=
∑N

i=1 Ii,ai(t),

which is a value function that evaluates matchings through the index value. Then, the

schedule x(t) can be written as

x(t) ∈ arg max
a∈{m(t),x(t−1)}

V (a; I(t)).
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• During the transmission slot, each user i accesses channel k if xi(t) = k and gets

reward Xi,k(t). Then it updates µ̂i,k(t) and τ̂i,k(t) according to (3) and (4).

Algorithm 1 Uniform sampling.
At the beginning of each time slot t

1: Select m(t) ∈M uniformly at random

2: Calculate Ii,mi(t)(t) and Ii,xi(t−1)(t) for all i

3: x(t) ∈ arg maxa∈{m(t),x(t−1)} V (a; I(t))

/* make transmissions with schedule x(t) */

4: Update µ̂i,k(t) and τ̂i,k(t) for all (i, k) with k = xi(t)

While the procedure appears to be similar to that of Q-CSMA [17], we aim to minimize

the accumulated regret rather than queue stability, and develop novel techniques to evaluate

its performance. The complexity of the algorithm can be obtained as follows. In the control

phase, arbitrary matching is selected uniformly at random, which takes O(1) time. In the

decision phase, each user calculates UCB indices for at most two channels: one in the candidate

matching and/or one in the previous schedule, which can be done in parallel and takes O(1)

time. A central agent collects the indicies, which takes O(N) time, and selects schedule x(t) by

comparing V (m(t); I(t)) and V (x(t− 1); I(t)), which takes O(N) time. After the transmission,

an update of µ̂i,k(t) and τ̂i,k(t) is necessary at each user i for channel k = xi(t), which takes

O(1) time. Thus, the total computational complexity of Uniform sampling is O(N).

The idea of reducing complexity in uniform sampling can be applied to other MAB problems

such as combinatorial MAB with more general graph rather than bipartite graph. Given graph

G = (V,E), where V and E are the sets of nodes and edges, respectively, it is known that

playing the maximum weighted matching with UCB index as a weight on each edge at each time

slot achieves logarithmic growth of regret with respect to time [10]. Computational complexity

of finding a maximum weighted matching in general graph is O(V 2E) [19]. This polynomial

complexity can be improved to linear complexity using our uniform sampling.

3.2 Performance evaluation

We now evaluate the performance of uniform sampling algorithm and show that it achieves

the logarithmic growth of expected total regret with respect to time t. We first decompose

the regret into the maximum non-optimality gap which will be defined later and the expected

number of times that non-optimal matchings scheduled, and then show that the expected number

of exploration to non-optimal matchings is bounded. The challenge of showing the latter comes

from the procedure of selecting a schedule, i.e., sampling a candidate matching and comparing

it to the previous schedule. When we select a schedule with the maximum weighted matching,

the value of non-optimal matching a (i.e., V (a; I(t))) will be compared with the value of optimal

matching a∗ (i.e., V (a∗; I(t))). In contrast, when we ’sample’ a candidate matching, there
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is a positive probability that both the candidate matching and the previous schedule are a

non-optimal matching, thus we should take into account the comparison between the values of

non-optimal matchings. We start by defining some notations.

Let us define ∆∗a := V (a∗;µ)− V (a;µ), which is the expected regret of matching a and de-

noted by non-optimality gap of matching a. Let ∆∗min := mina6=a∗ ∆∗a and ∆∗max := maxa6=a∗ ∆∗a

denote the minimum and maximum non-optimality gap, respectively. Let τ̂a(T ) denote the

number of times that matching a is scheduled by time T , i,e,. τ̂a(t) =
∑t

s=1 I{x(s) = a}. We

denote the cardinality of a set by | · |.
The following lemma provides an upper bound on the regret for any policy [14].

Lemma 1 For any policy π, the expected total regret defined in (2) is upper-bounded as

Rπ(T ) ≤ ∆∗max
∑
a6=a∗

E [τ̂a(T )] .

Proof: We can rewrite the expected total regret under policy π as

Rπ(T ) = T
N∑
i=1

µi,a∗i −
∑
a∈M

T∑
t=1

N∑
i=1

E [Xi,ai(t)I{x(t) = a}]

=
∑
a∈M

T∑
t=1

N∑
i=1

E
[
(µi,a∗i −Xi,ai(t))I{x(t) = a}

]
=
∑
a∈M

T∑
t=1

N∑
i=1

E [I{x(t) = a}] (µi,a∗i − µi,ai)

=
∑
a∈M

(
E [τ̂a(T )]

N∑
i=1

(µi,a∗i − µi,ai)

)
.

Then, we can upper-bound Rπ(T ) as

Rπ(T ) ≤ ∆∗max
∑
a 6=a∗

E [τ̂a(T )] .

�

The following proposition is one of our main contributions.

Proposition 1 Under uniform sampling, the expected number of exploration to non-optimal

matchings is upper-bounded as∑
a6=a∗

E [τ̂a(T )] ≤ (|M| − 1)(|M|+ 1)

(
4N2(N + 1) log T

(∆∗min)2
+ 1

)
+ C1 + C2,

where C1 = |M|(|M| − 2)
(

(|M|−1)·(|M|−2)·Nπ2

6|M| + 1
)
and C2 = |M|

(
(|M|−1)Nπ2

3 + 1
)
.

Suppose that, for non-optimal matching a, V (a; I(t)) ≥ V (a∗; I(t)). It implies that at least

one of the following events occurs. 1) In a∗, at least one of actual means is underestimated, 2)

in a, at least one of actual means is overestimated, and 3) a needs to be explored. From the
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Chernoff-Hoeffding bound [20], the probability that each case of 1) and 2) occurs at time slot t

can be bounded by Nt−2. We show that, as non-optimal matching a is scheduled more (i.e., a

is sufficiently explored), the matching a satisfies V (a; I(t)) < V (a∗; I(t)) with high probability,

and the probability that x(t) = a∗ approaches to 1.

We first show that the probability of underestimation of optimal matching a∗ or overestima-

tion of non-optimal matching a gets smaller.

Lemma 2 Suppose that a non-optimal matching a is scheduled more than
⌈

4N2(N+1) log t
(∆∗min)2

⌉
times

by time slot t. Then, the probability that the total sum of UCB indices from a is greater than

that from an optimal matching a∗ is less than 2Nt−2, i.e.,

P (V (a; I(t)) ≥ V (a∗; I(t))) ≤ 2Nt−2.

Proof: We let µ̂i,k,τ denote average reward after user i by accessing channel k for τ times, and

let ct,s =

√
(N+1) log t

s denote the interval of confidence bound at time t. Let l =
⌈

4N2(N+1) log t
(∆∗min)2

⌉
.

Non-optimal matching a has been scheduled for τ̂a(t) ≥ l, which implies that each edge (i, ai)

satisfies τ̂i,ai(t) ≥ l for all i. Comparing with the value function of optimal matching a∗,

I{V (a; I(t)) ≥ V (a∗; I(t))}

(A)
= I{

N∑
i=1

(µ̂i,ai,τ̂i,ai (t−1) + ct−1,τ̂i,ai (t−1)) ≥
N∑
i=1

(µ̂i,a∗i ,τi,a∗i (t−1) + ct−1,τi,a∗
i

(t−1))}

≤ I{ max
l≤s1,...,sN<t

N∑
i=1

(µ̂i,ai,si + ct−1,si) ≥ min
0<s′1,...,s

′
N<t

N∑
i=1

(µ̂i,a∗i ,s′i + ct−1,s′i
)}

(B)
≤

t−1∑
s1=l

· · ·
t−1∑
sN=l

t−1∑
s′1=1

· · ·
t−1∑
s′N=1

I{
N∑
i=1

(µ̂i,ai,si + ct−1,si) ≥
N∑
i=1

(µ̂i,a∗i ,s′i + ct−1,s′i
)}

≤
t∑

s1=1

· · ·
t∑

sN=1

t∑
s′1=1

· · ·
t∑

s′N=1

I{
N∑
i=1

(µ̂i,ai,si + ct,si) ≥
N∑
i=1

(µ̂i,a∗i ,s′i + ct,s′i)}

(6)

where equality (A) comes from the definition of V (·; I(t)) and (5), and inequality (B) can be

obtained by summing the indicator functions for all l ≤ s1, ..., sN ≤ t−1 and 1 ≤ s′1, ..., s′N ≤ t−1,

which can be further extended to the last inequality. Let us denote the event
∑N

i=1(µ̂i,ai,si +

ct,si) ≥
∑N

i=1(µ̂i,a∗i ,s′i + ct,s′i) by Z and consider the following 2N + 1 events:

Ai : µ̂i,a∗i ,s′i ≤ µi,a∗i − ct,s′i , 1 ≤ i ≤ N,

Bi : µ̂i,ai,si ≥ µi,ai + ct,si , 1 ≤ i ≤ N,

C :
N∑
i=1

µi,a∗i <
N∑
i=1

µi,ai + 2
N∑
i=1

ct,si .

Suppose that event Z occurs; I{Z} = 1. If
∑N

i=1 I{Ai} = 0, then
∑N

i=1 µ̂i,ai,si +
∑N

i=1 ct,si ≥∑N
i=1 µ̂i,a∗i ,s′i +

∑N
i=1 ct,s′i >

∑N
i=1 µi,a∗i , where the first inequality comes from the occurrence of

event Z and the second inequality comes from the non-occurrence of events {Ai}. If
∑N

i=1 I{Bi} =

8



0, then
∑N

i=1 µi,ai + 2
∑N

i=1 ct,si >
∑N

i=1 µ̂i,ai,si +
∑N

i=1 ct,si . Thus if none of events Ai and Bi
occur, then by combining the two inequalities, we have

∑N
i=1 µi,ai + 2

∑N
i=1 ct,si >

∑N
i=1 µi,a∗i ,

i.e., I{C} = 1. Hence, at least one of the above 2N + 1 events must occur. Again, we note that

the probability of each event Ai and Bi can be bounded by the Chernoff-Hoeffding bound [20]

as

P
(
µ̂i,a∗i ,s′i ≤ µi,a∗i − ct,s′i

)
≤ t−2(N+1),

P (µ̂i,ai,si ≥ µi,ai + ct,si) ≤ t−2(N+1),

respectively. Also, the probability of event C equals 0 if si ≥
⌈

4N2(N+1) log t
(∆∗min)2

⌉
, because

0 >

N∑
i=1

µi,a∗i −
N∑
i=1

µi,ai − 2

N∑
i=1

ct,si

=

N∑
i=1

µi,a∗i −
N∑
i=1

µi,ai − 2

N∑
i=1

√
(N + 1) log t

si

≥
N∑
i=1

µi,a∗i −
N∑
i=1

µi,ai −∆∗min

≥ 0,

where the last inequality comes from the fact that ∆∗min ≤ mina6=a∗
∑N

i=1(µi,a∗i − µi,ai). This

implies that the probability that event Z occurs is no greater than
∑N

i=1(P (Ai) + P (Bi)). By

taking expectation over (6), we can obtain

P (V (a; I(t)) ≥ V (a∗; I(t)))

≤
t∑

s1=1

· · ·
t∑

sN=1

t∑
s′1=1

· · ·
t∑

s′N=1

P

(
N∑
i=1

(µ̂i,ai,si + ct,si) ≥
N∑
i=1

(µ̂i,a∗i ,s′i + ct,s′i)

)

≤
t∑

s1=1

· · ·
t∑

sN=1

t∑
s′1=1

· · ·
t∑

s′N=1

2Nt−2(N+1)

≤ 2Nt−2.

�

Now we show that the number of exploration to non-optimal matching is bounded and we

have the proposition.

Proof of Proposition 1: We classify the case into two exclusive subcases. Let T ′ is the

smallest time slot that satisfies τ̂a(T ′) ≥
⌈

4N2(N+1) log T
(∆∗min)2

⌉
for all a 6= a∗, which denotes the time

when all non-optimal matchings are sufficiently explored. If some non-optimal matching is not

sufficiently scheduled, we may have T ′ > T . We divide the set of all matchingsM into the set

of non-optimal matchings denoted by Mo and the set of optimal matchings denoted by M∗,
i.e.,M =Mo ∪M∗.
(1) When T ′ ≤ T : Let l =

⌈
4N2(N+1) log T

(∆∗min)2

⌉
. At time slot t, let S(t) denote the set of

9



Figure 3: Matching an is scheduled ln,m times during (Tm−1, Tm].

non-optimal matchings that are sufficiently scheduled with τ̂a(t) ≥ l, and S(t) denote the set

of non-optimal matchings that are insufficiently scheduled with τ̂a(t) < l. Let M(≤ |M| − 1)

denote the number of non-optimal matchings, and let Mo = {a1,a2, ...,aM}. Let Tn denote

the smallest time at which matching an sufficiently scheduled, i.e., τ̂an(Tn) = l. Without loss of

generality, we assume T1 < T2 < · · · < TM = T ′. For an, let ln,m denote the number of time

slots that an is scheduled in (Tm−1, Tm], as shown in Fig. 3. Note that
∑n

m=1 ln,m = l for all n.

Then, we have

∑
a∈Mo

τ̂a(T ′) =
∑

a∈Mo

T ′∑
t=1

I{x(t) = a}

= lM +
M−1∑
n=1

Tn+1∑
t=Tn+1

∑
a∈S(Tn)

I{x(t) = a}. (7)

In the last equality, the first term denote the total number of schedules for non-optimal matchings

up to l, which can be obtained by summing ln,m of black arrows in Fig. 3. The second term

denotes the total number of time slots that each non-optimal matching a is scheduled after it is

sufficiently scheduled, denoted by blue arrows in Fig. 3. The second term can be bounded by the

maximum number of time slots that matching a ∈ S(Tn) can be played during (Tn, Tn+1]. Note

that S(Tn)∪S(Tn)∪M∗ =M. We compute the probability of the second term by dividing the

10



event x(t) = a into three subcases based on x(t− 1) as∑
a∈S(Tn)

P (x(t) = a)

=
∑

a∈S(Tn)

P (x(t) = a | x(t− 1) ∈M∗)P (x(t− 1) ∈M∗) (8)

+
∑

a∈S(Tn)

P (x(t) = a | x(t− 1) ∈ S(Tn))P (x(t− 1) ∈ S(Tn)) (9)

+
∑

a∈S(Tn)

P
(
x(t) = a | x(t− 1) ∈ S(Tn)

)
P
(
x(t− 1) ∈ S(Tn)

)
. (10)

The first term (8) can be bounded as∑
a∈S(Tn)

P (x(t) = a | x(t− 1) ∈M∗)P (x(t− 1) ∈M∗)

≤
∑

a∈S(Tn)

P (m(t) = a, V (a; I(t)) ≥ V (a∗; I(t)))P (x(t− 1) ∈M∗)

≤
∑

a∈S(Tn)

P (V (a; I(t)) ≥ V (a∗; I(t)))

≤ |S(Tn)| · 2Nt−2, (11)

where the last inequality comes from Lemma 5, and the result holds for all t ∈ (Tn, Tn+1]. The

second term (9) can be bounded by∑
a∈S(Tn)

P (x(t) = a | x(t− 1) ∈ S(Tn))P (x(t− 1) ∈ S(Tn))

≤ P (x(t− 1) ∈ S(Tn)) , (12)

for all t ∈ (Tn, Tn+1]. Now we obtain the bound of the third term (10).∑
a∈S(Tn)

P
(
x(t) = a | x(t− 1) ∈ S(Tn)

)
· P
(
x(t− 1) ∈ S(Tn)

)
=

∑
a∈S(Tn)

P
(
x(t) ∈ S(Tn) | x(t− 1) = a

)
· P (x(t− 1) = a) .

We further divide the conditional probability as, for a ∈ S(Tn) and some a∗ ∈M∗,

P
(
x(t) ∈ S(Tn) | x(t− 1) = a

)
= P

(
x(t) ∈ S(Tn) | x(t− 1) = a,m(t) = a∗

)
· P (m(t) = a∗)

+ P
(
x(t) ∈ S(Tn) | x(t− 1) = a,m(t) 6= a∗

)
· P (m(t) 6= a∗)

≤ P
(
x(t) ∈ S(Tn) | x(t− 1) = a,m(t) = a∗

)
· 1

|M|
+ 1 · |M| − 1

|M|

= P (V (a; I(t)) ≥ V (a∗; I(t))) · 1

|M|
+ 1 · |M| − 1

|M|

≤ 1

|M|
· 2Nt−2 + 1 · |M| − 1

|M|
,

11



where the last inequality comes from Lemma 5. Hence, we can obtain an upper bound as∑
a∈S(Tn)

P
(
x(t) = a | x(t− 1) ∈ S(Tn)

)
P
(
x(t− 1) ∈ S(Tn)

)
≤

∑
a∈S(Tn)

P (x(t− 1) = a)

[
|M| − 1

|M|
+

1

|M|
· 2Nt−2

]
, (13)

for all t ∈ (Tn, Tn+1].

Letting α := |M|−1
|M| and combining (11), (12), and (13), we have∑

a∈S(Tn)

P (x(t) = a)

≤ P (x(t− 1) ∈ S(Tn)) +

(
|S(Tn)|+ 1

|M|

)
· 2Nt−2 + α

∑
a∈S(Tn)

P (x(t− 1) = a) .

Letting A :=
(
|S(Tn)|+ 1

|M|

)
· 2N , the inequality can be extended in a recursive manner for

t ∈ (Tn, Tn+1] as∑
a∈S(Tn)

P (x(t) = a) ≤ P (x(t− 1) ∈ S(Tn)) +At−2

+ α

P (x(t− 2) ∈ S(Tn)) +A(t− 1)−2 + α
∑

a∈S(Tn)

P (x(t− 2) = a)

 .

By extending it down to Tn, we can obtain∑
a∈S(Tn)

P (x(t) = a)

≤ P (x(t− 1) ∈ S(Tn)) + αP (x(t− 2) ∈ S(Tn)) + · · ·+ αt−Tn−1P (x(Tn + 1) ∈ S(Tn)) (14)

+A
(
t−2 + α(t− 1)−2 + · · ·+ αt−Tn−1(Tn + 1)−2

)
(15)

+ αt−Tn
∑

a∈S(Tn)

P (x(Tn) = a) . (16)

Now we compute
∑Tn+1

t=Tn+1

∑
a∈S(Tn) P (x(t) = a). By summing up (14) over t ∈ (Tn, Tn+1], we

have
Tn+1∑

t=Tn+1

(
P (x(t− 1) ∈ S(Tn)) + αP (x(t− 2) ∈ S(Tn)) + · · ·+ αt−Tn−1P (x(Tn + 1) ∈ S(Tn))

)
=

Tn+1∑
t=Tn+1

Tn+1−t∑
s=0

αs · E [I{x(t) ∈ S(Tn)}]

≤ 1

1− α
E

 Tn+1∑
t=Tn+1

I{x(t) ∈ S(Tn)}


=

1

1− α
E

[
M∑

s=n+1

ls,n+1

]
, (17)

12



where
∑|M|−1

s=n+1 ls,n+1 is shown as black arrows in Fig. 3. Similarly, we take the sum of (15) over

(Tn, Tn+1], as

Tn+1∑
t=Tn+1

A
(
t−2 + α(t− 1)−2 + · · ·+ αt−Tn−1(Tn + 1)−2

)
= A

Tn+1∑
t=Tn+1

Tn+1−t∑
s=0

αs · t−2

≤ A · 1

1− α
· π

2

6
. (18)

Also, the last term (16) can be summed as

Tn+1∑
t=Tn+1

αt−Tn
∑

a∈S(Tn)

P (x(Tn) = a)

≤
Tn+1∑

t=Tn+1

αt−Tn

≤ 1

1− α
, (19)

since
∑

a∈S(Tn) P (x(Tn) = a) ≤ 1.

Combining (17), (18), and (19), and from α = |M|−1
|M| , we have

Tn+1∑
t=Tn+1

∑
a∈S(Tn)

P (x(t) = a)

≤ |M| ·
[(
|S(Tn)|+ 1

|M|

)
· Nπ

2

3
+ E

[
M∑

s=n+1

ls,n+1

]
+ 1

]
.

Finally, we have∑
a∈Mo

E
[
τ̂a(T ′)

]
=
∑

a∈Mo

T ′∑
t=1

P (x(t) = a)

= lM +
M−1∑
n=1

Tn+1∑
t=Tn+1

∑
a∈S(Tn)

P (x(t) = a)

≤ lM + |M|
[
Nπ2

3

M−1∑
n=1

|S(Tn)|+ E

[
M−1∑
n=1

M∑
s=n+1

ls,n+1

]
+ (M − 1)

(
1

|M|
· Nπ

2

3
+ 1

)]
≤ lM + |M|(M − 1)

(
(M − 2)Nπ2

6
+ l +

1

|M|
· Nπ

2

3
+ 1

)
,
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where the last inequality comes from the following facts.

(A)
M−1∑
n=1

|S(Tn)| =
M−1∑
n=1

n =
(M − 1)(M − 2)

2
, (20)

(B)
M−1∑
n=1

M∑
s=n+1

ls,n+1 =
M−1∑
n=1

n∑
s=2

ln,s ≤
M−1∑
n=1

l = l(M − 1). (21)

Therefore, we have∑
a∈Mo

E
[
τ̂a(T ′)

]
≤ (|M| − 1)(|M|+ 1)

(
4N2(N + 1) log T

(∆∗min)2
+ 1

)
+ C1, (22)

where C1 = |M|(|M| − 2)
(

(|M|−1)·(|M|−2)·Nπ2

6|M| + 1
)
.

Further, we have
∑

a∈Mo E [τ̂a(T )− τ̂a(T ′)] =
∑T

t=T ′+1

∑
a∈Mo P (x(t) = a), and divided

P (x(t) = a) into three subcases depending on the previous schedule and the candidate matching

that can yield a non-optimal matching as
T∑

t=T ′+1

∑
a∈Mo

P (x(t) = a)

=

T∑
t=T ′+1

( ∑
a∈Mo

P (x(t− 1) = a)P (m(t) ∈M∗)P (V (a, I(t)) ≥ V (a∗, I(t)))

+
∑

a∈Mo

P (x(t− 1) = a∗)P (m(t) = a)P (V (a, I(t)) ≥ V (a∗, I(t)))

+
∑

a∈Mo

P (x(t− 1) = a)P (m(t) ∈Mo)

)

≤
T∑

t=T ′+1

( ∑
a∈Mo

P (V (a, I(t)) ≥ V (a∗, I(t))) + P (m(t) ∈Mo)
∑

a∈Mo

P (x(t− 1) = a)

)
. (23)

From the Lemma 5, we have P (V (a, I(t)) ≥ V (a∗, I(t))) ≤ 2Nt−2 for all a ∈Mo, and P (m(t) ∈Mo) ≤
|M|−1
|M| . Let α = |M|−1

|M| , we have

T∑
t=T ′+1

∑
a∈Mo

P (x(t) = a)

≤
T∑

t=T ′+1

(
(|M| − 1) · 2Nt−2 + α

∑
a∈Mo

P (x(t− 1) = a)

)
(24)

(A)
≤

T∑
t=T ′+1

(
(|M| − 1) · 2N

T−t∑
s=0

αst−2 + αt−T
′ ∑
a∈Mo

P
(
x(T ′) = a

))

≤ |M|
(

(|M| − 1)Nπ2

3
+ 1

)
, (25)

where inequality (A) can be obtained by extending (24) in a recursive manner.

Therefore, combining (22) and (25) together, we have∑
a6=a∗

E
[
τ̂a(T ′)

]
≤ (|M| − 1)(|M|+ 1)

(
4N2(N + 1) log T

(∆∗min)2
+ 1

)
+ C1 + C2, (26)
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where C1 = |M|(|M| − 2)
(

(|M|−1)·(|M|−2)·Nπ2

6|M| + 1
)
and C2 = |M|

(
(|M|−1)Nπ2

3 + 1
)
.

(2) When T ′ > T : Let l =
⌈

4N2(N+1) log T
(∆∗min)2

⌉
. Let S(t) denote the set of matchings a with

τ̂a(t) ≥ l, and S(t) denote the set of matchings with τ̂a(t) < l. Let |S| and |S| denote the

size of the set S(T ) and S(T ), respectively. Let {a1,a2, ...,a|S|} denote the set of non-optimal

matchings which are sufficiently scheduled with τ̂an(T ) ≥ l, and let Tn denote the time at

which matching an sufficiently scheduled, τ̂an(Tn) = l. Without loss of generality, we assume

T1 < T2 < ... < T|S|. By time slot T , S(T ) is non-empty. It is clear that
∑

a∈S(T ) τ̂a(T ) ≤ l|S|.
Thus, we can write∑

a∈Mo

E [τ̂a(T )]

=
∑

a∈S(T )

E [τ̂a(T )] +
∑

a∈S(T )

E [τ̂a(T )]

≤ l|S|+
T∑
t=1

∑
a∈S

P (x(t) = a)

(A)
≤ l|S|+ l|S|+ |M||S|

[(
(|S| − 1)Nπ2

6
+ l +

1

|M|
· Nπ

2

3
+ 1

)]
= l(|M| − 1 + |M||S|) + |M||S|

[
(2 + |M|(|S| − 1)) ·Nπ2

6|M|
+ 1

]
, (27)

where inequality (A) can be obtained as the proof of the case when T ′ ≤ T .
From (26) and (27), we have∑

a6=a∗

E
[
τ̂a(T ′)

]
≤ (|M| − 1)(|M|+ 1)

(
4N2(N + 1) log T

(∆∗min)2
+ 1

)
+ C1 + C2,

where C1 = |M|(|M| − 2)
(

(|M|−1)·(|M|−2)·Nπ2

6|M| + 1
)
and C2 = |M|

(
(|M|−1)Nπ2

3 + 1
)
. �

Lemma 1 and Proposition 1 lead to the following result.

Theorem 1 Under uniform sampling, the expected total regret RU(T ) by time T is upper

bounded as

RU(T ) ≤ ∆∗max

(
(|M| − 1)(|M|+ 1) ·

(
4N2(N + 1) log T

(∆∗min)2
+ 1

)
+ C1 + C2

)
, (28)

where C1 = |M|(|M| − 2)
(

(|M|−1)·(|M|−2)·Nπ2

6|M| + 1
)
and C2 = |M|

(
(|M|−1)Nπ2

3 + 1
)
.

The theorem shows that regret RU(T ) of uniform sampling is upper bounded by O(log T ),

which is asymptotically optimal [8]. We highlight that it is the first scheme that achieves

O(log T ) regret with linear complexity.

IV Greedy Algorithm in Randomized Orders

In this section, we first introduce a greedy algorithm that maps an order to a matching, and

then describe our another low-complexity scheme that users the structure of bipartite graph
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and improves the regret performance of uniform sampling. We evaluate the performance of our

proposed scheme, and show that it also achieves asymptotic optimality with respect to time.

4.1 Greedy algorithm

We consider the orders that can be mapped to a matching through a greedy algorithm, which

will be used later in our scheme. We define an order o as a sequence of users (o1, ..., oN ) such

that oi ∈ {1, ..., N}, oi 6= oj for any i 6= j (i.e., a permutation of {1, ..., N}), where oj = i implies

that user i is j-th in the order. Let O denote the set of all orders (permutations) of N users.

We now consider a greedy matching greedyY(o) that maps each order o to a matching

a under some weight Y. Given weight Y and order o, it allows user o1 to select channel

ao1 = arg maxk∈K(G) Yoi,k, where K(G) denotes the set of channels in G. A tie is broken in a

predefined deterministic manner. Then we consider an induced graph ḠY2 by removing user o1,

ao1 , and all edges connected to o1 and ao1 from ḠY1 = G. The next user o2 selects channel ao2
with the maximum weight in the induced graph ḠY2 , and yields ḠY3 by removing o2, ao2 , and

their associated edges. The procedure repeats following the order o as shown in Algorithm 2.

Algorithm 2 Greedy matching algorithm greedyY(o).
Input: G = (N ∪K, E), weight Y, order o

1: ḠY1 ← G
2: for j = 1 to N do

3: i← oj

4: ai ← arg maxk∈K(ḠYj ) Yi,k

5: ḠYj+1 obtained by removing i, ai, and all edges connected to i and ai from ḠYj
6: end for

7: return a;

We consider the greedy matchings with Y = {µi,k}, from which an order o is mapped to a set

of channels ao := greedyµ(o). Note that different orders may yield the same greedy matching.

LetMG := {ao : o ∈ O} denote the set of all possible greedy matchings with weight of actual

means {µi,k}. Let us define value function V (a;µ) :=
∑N

i=1 µi,ai , which can be used to evaluate

a matching. An optimal matching a∗ can be written as a∗ ∈ arg maxa V (a;µ). We show the

following lemma.

Lemma 3 The setMG of all greedy matchings includes an optimal matching, i.e., a∗ ∈MG.

Lemma 3 implies that there exists an order o such that V (greedyµ(o);µ) = V (a∗;µ). We

prove it by exploiting the fact that in the optimal matching a∗, at least one user must play its

best channel (i.e., the channel with the highest actual mean). Let S1 denote the set of users

who are associated with their best channel in the optimal matching a∗. We show the following

lemma.
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Lemma 4 In bipartite graph G, S1 is not empty.

Proof: We assume without loss of generality that the graph G is symmetric complete bipartite

graph with N = K. For non-symmetric or incomplete bipartite graphs, we can construct such

a graph by adding additional users and by setting zero weight to originally non-existing edges.

Suppose that S1 is empty, i.e., no user plays its best channel in the optimal matching of G. Let
k∗i denote user i’s best channel. Given G = (N ∪K, E), we consider subgraph G′ = (N ∪K, E′),
where E′ consists of edges (i, a∗i ) with its (non-negative) weight and edges (i, k∗i ) with their

weight multiplied by −1 (i.e., non-positive weight) for all i. Since no user plays its best channel,

each user has exactly two edges (one with non-negative weight and another with non-positive

weight). Then, graph G′ has the same number of vertices and edges of 2N , and there exist at

least one alternating cycle C [21]. The cycle should have a negative weight sum since the sum of

incoming and outgoing edges of each user is always less than or equal to zero. This implies that

we can improve the weight sum by replacing all edges {(i, a∗i )} ∩ C with edges of C \ {(i, a∗i )}.
This contradicts that a∗ is an optimal matching. �

Proof of Lemma 3: We prove the lemma by constructing an order o∗ given an optimal

matching a∗. By Lemma 4, S1 is not empty, and we let the users in S1 to have the earliest

order. Note that the order within S1 is not important under our greedy algorithm since each

user will choose a different channel in a∗. Let Gs denote (bipartite) subgraph obtained by

excluding all users in S1 and all assigned channels and corresponding edges. Let S′1 denote the

set of users playing their best channel in subgraph Gs. Note that the induced matching a∗|Gs is

also an optimal matching in subgraph Gs (otherwise, we can easily show that a∗ is not optimal

in G), and from Lemma 4, we can find that S′1 is also not empty. We let the users in S′1 to be

in the group with the second earliest order. Repeating the procedure, we can obtain an order

o∗ that yields a∗ through greedy algorithm. �

Using Lemma 3, we can find an optimal matching through an exhaustive search over the or-

ders. By finding the order o∗ with the maximum value function o∗ ∈ arg maxo∈O V (greedyµ(o);µ),

we can obtain an optimal matching a∗ = greedyµ(o∗). However, it requires searching over all

N ! permutations. In the following, we develop a search algorithm with lower complexity.

4.2 Greedy algorithm in randomized orders

The results of Section 4.1 cannot be directly used since the channel statistics are unknown a

priori. Thus, we apply the same approach in Section III, i.e., storing the history as (3) and (4),

and scheduling with UCB indices as (5) instead of actual means.

Now we explain our GreedY in Randomized Orders (GYRO), which is shown in Algorithm 3.

GYRO has the same time structure and procedure as uniform sampling except for the way to

select candidate matching in the control phase. It selects an order o(t) ∈ O uniformly at random,

and then maps o(t) to matching m(t) by using greedy matching algorithm with weight Y = I(t).

Note that while uniform sampling selects m(t) uniformly at random inM, GYRO selects m(t)
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fromMG asymptotically. This will result in a noticeable performance improvement. We show

that GYRO outperforms uniform sampling, in particular with larger network size, through

simulations in Section V.

Algorithm 3 GreedY in Randomized Orders (GYRO).
At the beginning of each time slot t

1: Select o(t) ∈ O uniformly at random

2: Calculate Ii,k(t) for all (i, k)

3: m(t)← greedyI(t)(o)

4: x(t) ∈ arg maxa∈{m(t),x(t−1)} V (a; I(t))

/* make transmissions with schedule x(t) */

5: Update µ̂i,k(t) and τ̂i,k(t) for all (i, k) with k = xi(t)

The computational complexity of GYRO can be obtained as follows. In control phase,

each user calculates UCB indices for all channels in parallel, which takes O(K) time. A central

agent collects the indices, which takes O(N) times, and selects an order uniformly at random.

Given the indices and the order, the agent determines candidate matching m(t), which takes

O(N) time. In decision phase, the agent selects schedule x(t) by comparing V (m(t); I(t)) and

V (x(t−1); I(t)), which can be done in O(N) time. The final schedule x(t) is distributed to each

user in O(N) time. After the transmission, an update of µ̂i,k(t) and τ̂i,k(t) is necessary at each

user i for channel k = xi(t), which takes O(1) time. Thus, the total computational complexity

of GYRO is O(K) for K ≥ N .

4.3 Performance evaluation

We now show that it achieves the logarithmic growth of expected total regret with respect to

time t, and improves the performance of uniform sampling. We start with some notations.

Let us define δoa := mini,µi,ao
i
>µi,ai

{µi,aoi − µi,ai}, which is the minimum mean gap among

users such that µi,aoi > µi,ai in a matching a given an order o. Let δomin = mina6=ao δoa , and

∆min = min{∆∗min, mino∈O δ
o
min}. Let O∗ denote the set of orders such that greedyµ(o) = a∗,

which is not empty by Lemma 3.

Proposition 2 Under GYRO, the expected number of exploration to non-optimal matchings is

upper-bounded as∑
a6=a∗

E [τ̂a(T )] ≤ (|M| − 1)(N ! + 1) ·
(

4N2(N + 1) log T

∆2
min

+ 1

)
+ C1 + C2,

where C1 = N !(|M|−2)
(

(|M|−3)Nπ2

6

(
1 + 1

N !

)
+ 1
)
, and C2 = N !

|O∗|

(
(|M|−1)Nπ2

3

(
1 + |O∗|

N !

)
+ 1
)
.

Suppose that in control phase, given o(t) = o, non-greedy matching a 6= greedyµ(o) is picked

as candidate matching m(t). It implies that at least one of the following events occurs. 1)
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In ao = greedyµ(o), at least one of actual means is underestimated where a wins ao in the

greedy comparison, 2) in a, at least one of actual means is overestimated, and 3) a non-greedy

matching needs to be explored (i.e., some index excessively increases). From the Chernoff-

Hoeffding bound [20], the probability that each case of 1) and 2) occurs at time slot t can

be bounded by Nt−2. Further, if a non-greedy matching is played for a sufficient number of

times, then the matching does not need to be explored with high probability. This implies that

after non-optimal matchings are scheduled sufficiently, m(t) = a∗ with positive probability, and

the probability that V (a; I(t)) < V (a∗; I(t)) is close to 1. It implies that there is a positive

probability that an optimal matching is scheduled and then it remains scheduled with high

probability, which provides the bound.

We first show some lemmas which is used to prove Proposition 2.

Lemma 5 Suppose that a non-optimal matching a is scheduled more than
⌈

4N2(N+1) log t
∆2

min

⌉
times

by time slot t. Then, the probability that the total sum of UCB indices from a is greater than

that from an optimal matching a∗ is less than 2Nt−2, i.e.,

P (V (a; I(t)) ≥ V (a∗; I(t))) ≤ 2Nt−2.

We omit its proof since it can be shown similarly as the proof of Lemma 5. Note that

∆min ≤ ∆∗min

Lemma 6 Let āt = arg maxa V (a; I(t)) denote a matching with highest UCB index at time slot

t. Then, there exists an order ōt ∈ O which results in āt, i.e., ōt ∈ arg maxo greedy
I(t)(o).

We omit its proof since it can be shown similarly as the proof of Lemma 3.

Lemma 7 Consider matching a that has been scheduled sufficiently τ̂a(t) ≥
⌈

4N2(N+1) log t
∆2

min

⌉
. If

an order o such that a 6= greedyµ(o) is chosen in the control phase at time slot t, then the

probability that a is picked as candidate matching m(t) is less than 2Nt−2, i.e.,

P (m(t) = a | o(t) = o,a 6= greedyµ(o)) ≤ 2Nt−2.

Further, if τ̂a(t) ≥
⌈

4N2(N+1) log t
∆2

min

⌉
for all matchings a 6= a∗, then

P (m(t) 6= a∗) ≤ N !− |O∗|
N !

+
|O∗|
N !

2(|M| − 1)Nt−2.

Proof: For given o and a 6= ao = greedyµ(o), since m(t) = greedyI(t)(o), if m(t) = a,

there exist at least one user i such that µi,ai ≤ µi,aoi and Ii,ai(t) ≥ Ii,aoi (t). Let µ̂i,k,τ denote

average reward for user i by playing channel k for τ times, and let ct,s =

√
(N+1) log t

s denote

the confidence bound at time t. Further, let l =
⌈

4N2(N+1) log t
∆2

min

⌉
. Since matching a has been

scheduled for τ̂a(t) ≥ l, each edge (i, ai) should satisfy τ̂i,ai(t) ≥ l for all i. Then, for a 6= ao, we

have
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I{greedyI(t)(o) = a}

≤ I{Ii,ai(t) ≥ Ii,aoi (t) and µi,ai ≤ µi,aoi for some i}

≤
∑

i:µi,ai≤µi,aoi

I{Ii,ai(t) ≥ Ii,aoi (t)}

(A)
=

∑
i:µi,ai≤µi,aoi

I{µ̂i,ai,τ̂i,ai (t−1) + ct−1,τ̂i,ai (t−1) ≥ µ̂i,aoi ,τ̂i,aoi (t−1) + ct−1,τ̂i,ao
i

(t−1)}

≤
∑

i:µi,ai≤µi,aoi

I{ max
l≤si<t

(µ̂i,ai,si + ct−1,si) ≥ min
0<s′i<t

(µ̂i,aoi ,s′i + ct−1,s′i
)}

(B)
≤

∑
i:µi,ai≤µi,aoi

t−1∑
si=l

t−1∑
s′i=1

I{µ̂i,ai,si + ct−1,si ≥ µ̂i,aoi ,s′i + ct−1,s′i
}

≤
∑

i:µi,ai≤µi,aoi

t∑
si=1

t∑
s′i=1

I{µ̂i,ai,si + ct,si ≥ µ̂i,aoi ,s′i + ct,s′i},

(29)

where equality (A) comes from (5), and inequality (B) can be obtained by summing the indicator

functions for all l ≤ si ≤ t − 1 and 1 ≤ s′i ≤ t − 1, which can be further extended to the last

inequality.

We pay attention to the event µ̂i,ai,si +ct,si ≥ µ̂i,aoi ,s′i +ct,s′i for users i such that µi,aoi ≥ µi,ai .
For those i, at least one of the following three events must occur.

Ai : µ̂i,aoi ,s′i ≤ µi,aoi − ct,s′i ,

Bi : µ̂i,ai,si ≥ µi,ai + ct,si ,

Ci : µi,aoi < µi,ai + 2ct,si .

If event Ai does not occur, then µ̂i,ai,si + ct,si ≥ µ̂i,aoi ,s′i + ct,s′i > µi,aoi . If event Bi does not

occur, then µi,ai + 2ct,si > µ̂i,ai,si + ct,si . Thus if both events Ai and Bi do not occur, then by

combining these two inequalities, we have µi,ai + 2ct,si > µi,aoi , which implies event Ci. Hence,

at least one of the above events must occur. Note that the probability of events Ai and Bi can

be bounded by the Chernoff-Hoeffding bound [20] as,

P
(
µ̂i,aoi ,s′i ≤ µi,aoi − ct,s′i

)
≤ t−2(N+1),

P (µ̂i,ai,si ≥ µi,ai + ct,si) ≤ t−2(N+1),

respectively. Also, the probability of event Ci equals 0 if si ≥
⌈

4N2(N+1) log t
∆2

min

⌉
, because

0 > µi,aoi − µi,ai − 2ct,si

= µi,aoi − µi,ai − 2

√
(N + 1) log t

si

≥ µi,aoi − µi,ai −
∆min

N

≥ 0,
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where the last inequality comes from the fact that ∆min ≤ mini,µi,ao
i
>µi,ai

{µi,aoi − µi,ai}. This

implies that for user i with µi,aoi ≥ µi,ai , the probability that the event µ̂i,ai,si + ct,si ≥ µ̂i,aoi ,s′i +

ct,s′i occurs is no greater than P (Ai) + P (Bi). By taking conditional expectation over (29), we

can obtain

P (m(t) = a | o(t) = o,a 6= greedyµ(o))

≤
∑

i:µi,ai≤µi,aoi

t∑
si=1

t∑
s′i=1

P
(
µ̂i,ai,si + ct,si ≥ µ̂i,aoi ,s′i + ct,s′i

)

≤
∑

i:µi,ai≤µi,aoi

t∑
si=1

t∑
s′i=1

2t−2(N+1)

≤ 2Nt−2.

Further, if τ̂a(t) ≥
⌈

4N2(N+1) log t
∆2

min

⌉
for all matchings a 6= a∗, using the above result, we can

obtain

P (m(t) 6= a∗) =
∑
o∈O

P (m(t) 6= a∗ | o(t) = o)P (o(t) = o)

≤
∑
o/∈O∗

P (o(t) = o) +
∑
o∈O∗

∑
a6=a∗

P (m(t) = a | o(t) = o,a 6= greedyµ(o)) · P (o(t) = o)

≤ N !− |O∗|
N !

+
|O∗|
N !
· (|M| − 1) · 2Nt−2,

where the first inequality holds, since, for o ∈ O∗ and a 6= a∗, we have greedyµ(o) = a∗ and thus

P (m(t) = a | o(t) = o) = P (m(t) = a | o(t) = o,a 6= greedyµ(o)), and the last inequality holds

since the order is chosen uniformly at random from N ! permutations (i.e., P (o(t) = o) = 1
N !)

and the number of non-optimal matchings is no greater than |M| − 1. �

Proof of Proposition 2: The procedure of showing the proposition is the same as the proof

of Proposition 1 except for obtaining the bound of (10). This difference comes from the way

to select a candidate matching under uniform sampling and GYRO. Therefore, we omit the

description of notations used in the proof, and begin with obtaining the bound of (10) when

T ′ ≤ T .
(1) When T ′ ≤ T :∑

a∈S(Tn)

P
(
x(t) = a | x(t− 1) ∈ S(Tn)

)
· P
(
x(t− 1) ∈ S(Tn)

)
=

∑
a∈S(Tn)

P
(
x(t) ∈ S(Tn) | x(t− 1) = a

)
· P (x(t− 1) = a) .

Note that for āt = arg maxa∈M V (a; I(t)), there exists ōt ∈ O such that greedyI(t)(ōt) = āt
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from Lemma 6. We further divide the conditional probability using ōt as

P
(
x(t) ∈ S(Tn) | x(t− 1) = a

)
= P

(
x(t) ∈ S(Tn) | x(t− 1) = a,o(t) = ōt

)
· P (o(t) = ōt)

+ P
(
x(t) ∈ S(Tn) | x(t− 1) = a,o(t) 6= ōt

)
· P (o(t) 6= ōt)

≤ P
(
x(t) ∈ S(Tn) | x(t− 1) = a,o(t) = ōt

)
· 1

N !
+ 1 · N !− 1

N !
.

Note that ōt leads to āt and V (āt; I(t)) ≥ V (a; I(t)) for all a at time t, which implies that x(t) =

āt regardless of x(t − 1). Hence, P
(
x(t) ∈ S(Tn) | x(t− 1) = a,o(t) = ōt

)
= P

(
āt ∈ S(Tn)

)
,

where

P
(
āt ∈ S(Tn)

)
≤

∑
a∈S(Tn)

P
(
a ∈ arg max

a′∈M
V (a′; I(t))

)
≤

∑
a∈S(Tn)

P (V (a; I(t)) ≥ V (a∗; I(t)))

≤ |S(Tn)| · 2Nt−2,

where the last inequality holds since the matchings in S(Tn) are sufficiently scheduled (Lemma 5).

Hence, we can obtain an upper bound as∑
a∈S(Tn)

P
(
x(t) = a | x(t− 1) ∈ S(Tn)

)
P
(
x(t− 1) ∈ S(Tn)

)
≤

∑
a∈S(Tn)

P (x(t− 1) = a)

[
N !− 1

N !
+

1

N !
· P
(
x(t) ∈ S(Tn) | x(t− 1) = a,o(t) = ōt

)]

≤
∑

a∈S(Tn)

P (x(t− 1) = a)

[
N !− 1

N !
+

1

N !
· |S(Tn)| · 2Nt−2

]
, (30)

for all t ∈ (Tn, Tn+1]. Letting α := N !−1
N ! and combining (11), (12), and (30), we have∑

a∈S(Tn)

P (x(t) = a)

≤ P (x(t− 1) ∈ S(Tn)) +

(
1 +

1

N !

)
|S(Tn)| · 2Nt−2 + α

∑
a∈S(Tn)

P (x(t− 1) = a) .

The inequality can be extended in a recursive manner as in the proof of Proposition 1 except

for letting A :=
(
1 + 1

N !

)
|S(Tn)| · 2N , and we have, from (17), (18), and (19),

Tn+1∑
t=Tn+1

∑
a∈S(Tn)

P (x(t) = a)

≤ 1

1− α
E

|M|−1∑
s=n+1

ls,n+1

+A · 1

1− α
· π

2

6
+

1

1− α

= N !

[(
1 +

1

N !

)
· Nπ

2

3
· |S(Tn)|+ E

[
M∑

s=n+1

ls,n+1

]
+ 1

]
.
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Finally, we have∑
a∈Mo

E
[
τ̂a(T ′)

]
=
∑

a∈Mo

T ′∑
t=1

P (x(t) = a)

= lM +

M−1∑
n=1

Tn+1∑
t=Tn+1

∑
a∈S(Tn)

P (x(t) = a)

≤ lM +N !

[(
1 +

1

N !

)
Nπ2

3

M−1∑
n=1

|S(Tn)|+ E

[
M−1∑
n=1

M∑
s=n+1

ls,n+1

]
+ (M − 1)

]
≤ lM +N !(M − 1)

((
1 +

1

N !

)
(M − 2)Nπ2

6
+ l + 1

)
,

where the last inequality comes from (20) and (21).

Therefore, with M = |M| − 1, we have

∑
a∈Mo

E
[
τ̂a(T ′)

]
≤ (|M| − 1)(N ! + 1)

(
4N2(N + 1) log T

∆2
min

+ 1

)
+ C1, (31)

where C1 = N !(|M| − 2)
((

1 + 1
N !

) (|M|−3)Nπ2

6 + 1
)
.

Further, we have
∑

a∈Mo E [τ̂a(T )− τ̂a(T ′)] =
∑T

t=T ′+1

∑
a∈Mo P (x(t) = a), which can be

upper bounded as (23). From the Lemma 5, we have P (V (a, I(t)) ≥ V (a∗, I(t))) ≤ 2Nt−2 for

all a ∈ Mo, and from the Lemma 7, we have P (m(t) ∈Mo) ≤ N !−|O∗|
N ! + |O∗|

N ! 2(|M| − 1)Nt−2.

Note that |O∗| > 0 from the Lemma 3. Let α = N !−|O∗|
N ! , we have

T∑
t=T ′+1

∑
a6=a∗

P (x(t) = a)

≤
T∑

t=T ′+1

(1 +
|O∗|
N !

)
· (|M| − 1) · 2Nt−2 + α

∑
a6=a∗

P (x(t− 1) = a)

 (32)

(A)
≤

T∑
t=T ′+1

(1 +
|O∗|
N !

)
· (|M| − 1) · 2N

T−t∑
s=0

αst−2 + αt−T
′ ∑
a6=a∗

P
(
x(T ′) = a

)
≤ N !

|O∗|

((
1 +
|O∗|
N !

)
(|M| − 1)Nπ2

3
+ 1

)
, (33)

where equality (A) can be obtained by extending (32) in a recursive manner.

Therefore, combining (31) and (33) together, we have

∑
a6=a∗

E [τ̂a(T )] ≤ (|M| − 1)(N ! + 1)

(
4N2(N + 1) log T

∆2
min

+ 1

)
+ C1 + C2, (34)

where C1 = N !(|M|−2)
((

1 + 1
N !

) (|M|−3)Nπ2

6 + 1
)
and C2 = N !

|O∗|

((
1 + |O∗|

N !

)
(|M|−1)Nπ2

3 + 1
)
.
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(2) When T ′ > T : We omit the description of notations used in the proof, which is the same

as in the proof of Proposition 1. We can write∑
a∈Mo

E [τ̂a(T )]

=
∑

a∈S(T )

E [τ̂a(T )] +
∑

a∈S(T )

E [τ̂a(T )]

≤ l|S|+
T∑
t=1

∑
a∈S

P (x(t) = a)

(A)
≤ l|S|+ l|S|+N !|S|

[(
1 +

1

N !

)
(|S| − 1)Nπ2

6
+ l + 1

]
= l(|M| − 1 +N !|S|) +N !|S|

[(
1 +

1

N !

)
(|S| − 1)Nπ2

6
+ 1

]
, (35)

where inequality (A) can be obtained as the proof of the case when T ′ ≤ T . From (35) and (34),

we have ∑
a6=a∗

E [τ̂a(T )] ≤ (|M| − 1)(N ! + 1)

(
4N2(N + 1) log T

∆2
min

+ 1

)
+ C1 + C2,

where C1 = N !(|M|−2)
((

1 + 1
N !

) (|M|−3)Nπ2

6 + 1
)
and C2 = N !

|O∗|

((
1 + |O∗|

N !

)
(|M|−1)Nπ2

3 + 1
)
.

�

Lemma 1 and Proposition 2 lead to the following result.

Theorem 2 Under GYRO, the expected total regret RGYRO(T ) by time T is upper bounded as

RGYRO(T ) ≤ ∆∗max

(
(|M| − 1)(N ! + 1) ·

(
4N2(N + 1) log T

∆2
min

+ 1

)
+ C1 + C2

)
, (36)

where C1 = N !(|M|−2)
(

(|M|−3)Nπ2

6

(
1 + 1

N !

)
+ 1
)
, and C2 = N !

|O∗|

(
(|M|−1)Nπ2

3

(
1 + |O∗|

N !

)
+ 1
)
.

The theorem shows that regret RGYRO(T ) of GYRO is upper bounded by O(log T ), which

is asymptotically optimal.

V Simulation results

We have shown that under our algorithms of uniform sampling and GYRO, the expected regret

grows logarithmically with respect to time. In this section, we demonstrate the performance

of our algorithms through simulations. We consider N = 5 users and K = 10 channels. If

user-channels pair (i, k) is played, then user i receives a binary reward drawn from Bernoulli

distribution with mean µi,k which is drawn uniformly at random between [0,1]. Simulation runs

for T = 105 time slots, and results are averaged over 20 repetitions.

We compare our algorithms (i.e., uniform sampling labeled as Uniform in Fig. 4 and GYRO)

with a well-known MaxWeight that solves the maximum weighted bipartite matching problem

24



0 20000 40000 60000 80000 100000
0

2000

4000

6000

8000

10000

12000

14000

Time

R
eg

re
t

 Uniform
 GYRO
 MaxWeight

(a) Complete bipartite graph.
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Figure 4: Average of total regrets with respect to time slots.
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Figure 5: Average of total regrets at T = 105 with respect to the number of channels.

at each time slot, i.e., x(t) ∈ arg maxa∈M V (a; I(t)). MaxWeight can be implemented using

brute-force search or Hungarian algorithm [22] whose computational complexities are O(KN )

and O((N +K)3), respectively. Note that the complexities of uniform sampling algorithm and

GYRO are O(N) and O(K), respectively.

We consider two bipartite graph: one complete bipartite graph as shown in Fig. 1 (i.e.,

there are NK edges with µi,k > 0), and one incomplete bipartite graph where each user i has

6 channels with µi,k > 0 out of 10 channels. Fig. 4 shows the total regrets of three algorithms

over time. In Fig. 4(a), the results from the complete graph are shown, and in Fig. 4(b), the

results from the incomplete graph are shown. As expected, the regret grows logarithmically over

time. Further, in both cases, the regret of uniform sampling is distinctly worse than GYRO.

Interestingly, in some cases, GYRO outperforms MaxWeight, in which case MaxWeight explores

non-optimal matchings more frequently than GYRO.

Now we show that the performance gaps between uniform sampling and GYRO enlarge

with respect to the size of network. The number of users is fixed with N = 5, and the num-

ber of channels varies from K = 5 to 20. Simulation runs for T = 105 time slots, and the

regret is captured at T = 105. The result is averaged over 20 repetitions. As seen in Fig. 5,

GYRO distinctly outperforms uniform sampling, and it is comparable with MaxWeight. Note

that since the regret is affected by both channel statistics (i.e., µi,k) and the number of channels,

the optimal regret does not linearly increase with the number of channels.
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VI Conclusion

In this paper, we develop low-complexity learning algorithms for opportunistic spectrum access

in multi-user multi-channel cognitive radio networks, and show that they achieves the expected

total regret growing at most logarithmically with respect to time. Through numerical sim-

ulations, we verify our results, and compare the performance with the well-known maximum

weighted matching algorithm at each time slot. The idea of reducing complexity can be applied

to other learning problems and remains as a future work.
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