486 research outputs found

    Achievable Rates of Multi-User Millimeter Wave Systems with Hybrid Precoding

    Full text link
    Millimeter wave (mmWave) systems will likely employ large antenna arrays at both the transmitters and receivers. A natural application of antenna arrays is simultaneous transmission to multiple users, which requires multi-user precoding at the transmitter. Hardware constraints, however, make it difficult to apply conventional lower frequency MIMO precoding techniques at mmWave. This paper proposes and analyzes a low complexity hybrid analog/digital beamforming algorithm for downlink multi-user mmWave systems. Hybrid precoding involves a combination of analog and digital processing that is motivated by the requirement to reduce the power consumption of the complete radio frequency and mixed signal hardware. The proposed algorithm configures hybrid precoders at the transmitter and analog combiners at multiple receivers with a small training and feedback overhead. For this algorithm, we derive a lower bound on the achievable rate for the case of single-path channels, show its asymptotic optimality at large numbers of antennas, and make useful insights for more general cases. Simulation results show that the proposed algorithm offers higher sum rates compared with analog-only beamforming, and approaches the performance of the unconstrained digital precoding solutions.Comment: to be presented in IEEE ICC 2015 - Workshop on 5G & Beyond - Enabling Technologies and Application

    Energy efficiency of mmWave massive MIMO precoding with low-resolution DACs

    Full text link
    With the congestion of the sub-6 GHz spectrum, the interest in massive multiple-input multiple-output (MIMO) systems operating on millimeter wave spectrum grows. In order to reduce the power consumption of such massive MIMO systems, hybrid analog/digital transceivers and application of low-resolution digital-to-analog/analog-to-digital converters have been recently proposed. In this work, we investigate the energy efficiency of quantized hybrid transmitters equipped with a fully/partially-connected phase-shifting network composed of active/passive phase-shifters and compare it to that of quantized digital precoders. We introduce a quantized single-user MIMO system model based on an additive quantization noise approximation considering realistic power consumption and loss models to evaluate the spectral and energy efficiencies of the transmit precoding methods. Simulation results show that partially-connected hybrid precoders can be more energy-efficient compared to digital precoders, while fully-connected hybrid precoders exhibit poor energy efficiency in general. Also, the topology of phase-shifting components offers an energy-spectral efficiency trade-off: active phase-shifters provide higher data rates, while passive phase-shifters maintain better energy efficiency.Comment: Published in IEEE Journal of Selected Topics in Signal Processin

    Machine Learning Inspired Energy-Efficient Hybrid Precoding for MmWave Massive MIMO Systems

    Full text link
    Hybrid precoding is a promising technique for mmWave massive MIMO systems, as it can considerably reduce the number of required radio-frequency (RF) chains without obvious performance loss. However, most of the existing hybrid precoding schemes require a complicated phase shifter network, which still involves high energy consumption. In this paper, we propose an energy-efficient hybrid precoding architecture, where the analog part is realized by a small number of switches and inverters instead of a large number of high-resolution phase shifters. Our analysis proves that the performance gap between the proposed hybrid precoding architecture and the traditional one is small and keeps constant when the number of antennas goes to infinity. Then, inspired by the cross-entropy (CE) optimization developed in machine learning, we propose an adaptive CE (ACE)-based hybrid precoding scheme for this new architecture. It aims to adaptively update the probability distributions of the elements in hybrid precoder by minimizing the CE, which can generate a solution close to the optimal one with a sufficiently high probability. Simulation results verify that our scheme can achieve the near-optimal sum-rate performance and much higher energy efficiency than traditional schemes.Comment: This paper has been accepted by IEEE ICC 2017. The simulation codes are provided to reproduce the results in this paper at: http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.htm
    • …
    corecore