83,012 research outputs found

    Low rank matrix recovery from rank one measurements

    Full text link
    We study the recovery of Hermitian low rank matrices XCn×nX \in \mathbb{C}^{n \times n} from undersampled measurements via nuclear norm minimization. We consider the particular scenario where the measurements are Frobenius inner products with random rank-one matrices of the form ajaja_j a_j^* for some measurement vectors a1,...,ama_1,...,a_m, i.e., the measurements are given by yj=tr(Xajaj)y_j = \mathrm{tr}(X a_j a_j^*). The case where the matrix X=xxX=x x^* to be recovered is of rank one reduces to the problem of phaseless estimation (from measurements, yj=x,aj2y_j = |\langle x,a_j\rangle|^2 via the PhaseLift approach, which has been introduced recently. We derive bounds for the number mm of measurements that guarantee successful uniform recovery of Hermitian rank rr matrices, either for the vectors aja_j, j=1,...,mj=1,...,m, being chosen independently at random according to a standard Gaussian distribution, or aja_j being sampled independently from an (approximate) complex projective tt-design with t=4t=4. In the Gaussian case, we require mCrnm \geq C r n measurements, while in the case of 44-designs we need mCrnlog(n)m \geq Cr n \log(n). Our results are uniform in the sense that one random choice of the measurement vectors aja_j guarantees recovery of all rank rr-matrices simultaneously with high probability. Moreover, we prove robustness of recovery under perturbation of the measurements by noise. The result for approximate 44-designs generalizes and improves a recent bound on phase retrieval due to Gross, Kueng and Krahmer. In addition, it has applications in quantum state tomography. Our proofs employ the so-called bowling scheme which is based on recent ideas by Mendelson and Koltchinskii.Comment: 24 page

    Unicity conditions for low-rank matrix recovery

    Get PDF
    Low-rank matrix recovery addresses the problem of recovering an unknown low-rank matrix from few linear measurements. Nuclear-norm minimization is a tractible approach with a recent surge of strong theoretical backing. Analagous to the theory of compressed sensing, these results have required random measurements. For example, m >= Cnr Gaussian measurements are sufficient to recover any rank-r n x n matrix with high probability. In this paper we address the theoretical question of how many measurements are needed via any method whatsoever --- tractible or not. We show that for a family of random measurement ensembles, m >= 4nr - 4r^2 measurements are sufficient to guarantee that no rank-2r matrix lies in the null space of the measurement operator with probability one. This is a necessary and sufficient condition to ensure uniform recovery of all rank-r matrices by rank minimization. Furthermore, this value of mm precisely matches the dimension of the manifold of all rank-2r matrices. We also prove that for a fixed rank-r matrix, m >= 2nr - r^2 + 1 random measurements are enough to guarantee recovery using rank minimization. These results give a benchmark to which we may compare the efficacy of nuclear-norm minimization

    Uniqueness Conditions For Low-Rank Matrix Recovery

    Get PDF
    Low-rank matrix recovery addresses the problem of recovering an unknown low-rank matrix from few linear measurements. Nuclear-norm minimization is a tractible approach with a recent surge of strong theoretical backing. Analagous to the theory of compressed sensing, these results have required random measurements. For example, m \u3e= Cnr Gaussian measurements are sufficient to recover any rank-r n x n matrix with high probability. In this paper we address the theoretical question of how many measurements are needed via any method whatsoever --- tractible or not. We show that for a family of random measurement ensembles, m \u3e= 4nr - 4r^2 measurements are sufficient to guarantee that no rank-2r matrix lies in the null space of the measurement operator with probability one. This is a necessary and sufficient condition to ensure uniform recovery of all rank-r matrices by rank minimization. Furthermore, this value of m precisely matches the dimension of the manifold of all rank-2r matrices. We also prove that for a fixed rank-r matrix, m \u3e= 2nr - r^2 + 1 random measurements are enough to guarantee recovery using rank minimization. These results give a benchmark to which we may compare the efficacy of nuclear-norm minimization

    Simultaneously Structured Models with Application to Sparse and Low-rank Matrices

    Get PDF
    The topic of recovery of a structured model given a small number of linear observations has been well-studied in recent years. Examples include recovering sparse or group-sparse vectors, low-rank matrices, and the sum of sparse and low-rank matrices, among others. In various applications in signal processing and machine learning, the model of interest is known to be structured in several ways at the same time, for example, a matrix that is simultaneously sparse and low-rank. Often norms that promote each individual structure are known, and allow for recovery using an order-wise optimal number of measurements (e.g., 1\ell_1 norm for sparsity, nuclear norm for matrix rank). Hence, it is reasonable to minimize a combination of such norms. We show that, surprisingly, if we use multi-objective optimization with these norms, then we can do no better, order-wise, than an algorithm that exploits only one of the present structures. This result suggests that to fully exploit the multiple structures, we need an entirely new convex relaxation, i.e. not one that is a function of the convex relaxations used for each structure. We then specialize our results to the case of sparse and low-rank matrices. We show that a nonconvex formulation of the problem can recover the model from very few measurements, which is on the order of the degrees of freedom of the matrix, whereas the convex problem obtained from a combination of the 1\ell_1 and nuclear norms requires many more measurements. This proves an order-wise gap between the performance of the convex and nonconvex recovery problems in this case. Our framework applies to arbitrary structure-inducing norms as well as to a wide range of measurement ensembles. This allows us to give performance bounds for problems such as sparse phase retrieval and low-rank tensor completion.Comment: 38 pages, 9 figure

    Compressed sensing and robust recovery of low rank matrices

    Get PDF
    In this paper, we focus on compressed sensing and recovery schemes for low-rank matrices, asking under what conditions a low-rank matrix can be sensed and recovered from incomplete, inaccurate, and noisy observations. We consider three schemes, one based on a certain Restricted Isometry Property and two based on directly sensing the row and column space of the matrix. We study their properties in terms of exact recovery in the ideal case, and robustness issues for approximately low-rank matrices and for noisy measurements
    corecore