346 research outputs found

    Hyperspectral Image Restoration via Total Variation Regularized Low-rank Tensor Decomposition

    Full text link
    Hyperspectral images (HSIs) are often corrupted by a mixture of several types of noise during the acquisition process, e.g., Gaussian noise, impulse noise, dead lines, stripes, and many others. Such complex noise could degrade the quality of the acquired HSIs, limiting the precision of the subsequent processing. In this paper, we present a novel tensor-based HSI restoration approach by fully identifying the intrinsic structures of the clean HSI part and the mixed noise part respectively. Specifically, for the clean HSI part, we use tensor Tucker decomposition to describe the global correlation among all bands, and an anisotropic spatial-spectral total variation (SSTV) regularization to characterize the piecewise smooth structure in both spatial and spectral domains. For the mixed noise part, we adopt the 1\ell_1 norm regularization to detect the sparse noise, including stripes, impulse noise, and dead pixels. Despite that TV regulariztion has the ability of removing Gaussian noise, the Frobenius norm term is further used to model heavy Gaussian noise for some real-world scenarios. Then, we develop an efficient algorithm for solving the resulting optimization problem by using the augmented Lagrange multiplier (ALM) method. Finally, extensive experiments on simulated and real-world noise HSIs are carried out to demonstrate the superiority of the proposed method over the existing state-of-the-art ones.Comment: 15 pages, 20 figure

    スペクトルの線形性を考慮したハイパースペクトラル画像のノイズ除去とアンミキシングに関する研究

    Get PDF
    This study aims to generalize color line to M-dimensional spectral line feature (M>3) and introduce methods for denoising and unmixing of hyperspectral images based on the spectral linearity.For denoising, we propose a local spectral component decomposition method based on the spectral line. We first calculate the spectral line of an M-channel image, then using the line, we decompose the image into three components: a single M-channel image and two gray-scale images. By virtue of the decomposition, the noise is concentrated on the two images, thus the algorithm needs to denoise only two grayscale images, regardless of the number of channels. For unmixing, we propose an algorithm that exploits the low-rank local abundance by applying the unclear norm to the abundance matrix for local regions of spatial and abundance domains. In optimization problem, the local abundance regularizer is collaborated with the L2, 1 norm and the total variation.北九州市立大

    Adaptive Regularized Low-Rank Tensor Decomposition for Hyperspectral Image Denoising and Destriping

    Full text link
    Hyperspectral images (HSIs) are inevitably degraded by a mixture of various types of noise, such as Gaussian noise, impulse noise, stripe noise, and dead pixels, which greatly limits the subsequent applications. Although various denoising methods have already been developed, accurately recovering the spatial-spectral structure of HSIs remains a challenging problem to be addressed. Furthermore, serious stripe noise, which is common in real HSIs, is still not fully separated by the previous models. In this paper, we propose an adaptive hyperLaplacian regularized low-rank tensor decomposition (LRTDAHL) method for HSI denoising and destriping. On the one hand, the stripe noise is separately modeled by the tensor decomposition, which can effectively encode the spatial-spectral correlation of the stripe noise. On the other hand, adaptive hyper-Laplacian spatial-spectral regularization is introduced to represent the distribution structure of different HSI gradient data by adaptively estimating the optimal hyper-Laplacian parameter, which can reduce the spatial information loss and over-smoothing caused by the previous total variation regularization. The proposed model is solved using the alternating direction method of multipliers (ADMM) algorithm. Extensive simulation and real-data experiments all demonstrate the effectiveness and superiority of the proposed method

    Graph Spatio-Spectral Total Variation Model for Hyperspectral Image Denoising

    Full text link
    The spatio-spectral total variation (SSTV) model has been widely used as an effective regularization of hyperspectral images (HSI) for various applications such as mixed noise removal. However, since SSTV computes local spatial differences uniformly, it is difficult to remove noise while preserving complex spatial structures with fine edges and textures, especially in situations of high noise intensity. To solve this problem, we propose a new TV-type regularization called Graph-SSTV (GSSTV), which generates a graph explicitly reflecting the spatial structure of the target HSI from noisy HSIs and incorporates a weighted spatial difference operator designed based on this graph. Furthermore, we formulate the mixed noise removal problem as a convex optimization problem involving GSSTV and develop an efficient algorithm based on the primal-dual splitting method to solve this problem. Finally, we demonstrate the effectiveness of GSSTV compared with existing HSI regularization models through experiments on mixed noise removal. The source code will be available at https://www.mdi.c.titech.ac.jp/publications/gsstv.Comment: Accepted to IEEE Geoscience and Remote Sensing Letters. The code is available at https://www.mdi.c.titech.ac.jp/publications/gsst

    A Constrained Convex Optimization Approach to Hyperspectral Image Restoration with Hybrid Spatio-Spectral Regularization

    Full text link
    We propose a new constrained optimization approach to hyperspectral (HS) image restoration. Most existing methods restore a desirable HS image by solving some optimization problem, which consists of a regularization term(s) and a data-fidelity term(s). The methods have to handle a regularization term(s) and a data-fidelity term(s) simultaneously in one objective function, and so we need to carefully control the hyperparameter(s) that balances these terms. However, the setting of such hyperparameters is often a troublesome task because their suitable values depend strongly on the regularization terms adopted and the noise intensities on a given observation. Our proposed method is formulated as a convex optimization problem, where we utilize a novel hybrid regularization technique named Hybrid Spatio-Spectral Total Variation (HSSTV) and incorporate data-fidelity as hard constraints. HSSTV has a strong ability of noise and artifact removal while avoiding oversmoothing and spectral distortion, without combining other regularizations such as low-rank modeling-based ones. In addition, the constraint-type data-fidelity enables us to translate the hyperparameters that balance between regularization and data-fidelity to the upper bounds of the degree of data-fidelity that can be set in a much easier manner. We also develop an efficient algorithm based on the alternating direction method of multipliers (ADMM) to efficiently solve the optimization problem. Through comprehensive experiments, we illustrate the advantages of the proposed method over various HS image restoration methods including state-of-the-art ones.Comment: 20 pages, 4 tables, 10 figures, submitted to MDPI Remote Sensin
    corecore