25,006 research outputs found

    Risk-Sensitive Reinforcement Learning: A Constrained Optimization Viewpoint

    Full text link
    The classic objective in a reinforcement learning (RL) problem is to find a policy that minimizes, in expectation, a long-run objective such as the infinite-horizon discounted or long-run average cost. In many practical applications, optimizing the expected value alone is not sufficient, and it may be necessary to include a risk measure in the optimization process, either as the objective or as a constraint. Various risk measures have been proposed in the literature, e.g., mean-variance tradeoff, exponential utility, the percentile performance, value at risk, conditional value at risk, prospect theory and its later enhancement, cumulative prospect theory. In this article, we focus on the combination of risk criteria and reinforcement learning in a constrained optimization framework, i.e., a setting where the goal to find a policy that optimizes the usual objective of infinite-horizon discounted/average cost, while ensuring that an explicit risk constraint is satisfied. We introduce the risk-constrained RL framework, cover popular risk measures based on variance, conditional value-at-risk and cumulative prospect theory, and present a template for a risk-sensitive RL algorithm. We survey some of our recent work on this topic, covering problems encompassing discounted cost, average cost, and stochastic shortest path settings, together with the aforementioned risk measures in a constrained framework. This non-exhaustive survey is aimed at giving a flavor of the challenges involved in solving a risk-sensitive RL problem, and outlining some potential future research directions

    Second order adjoints for solving PDE-constrained optimization problems

    Get PDF
    Inverse problems are of utmost importance in many fields of science and engineering. In the variational approach inverse problems are formulated as PDE-constrained optimization problems, where the optimal estimate of the uncertain parameters is the minimizer of a certain cost functional subject to the constraints posed by the model equations. The numerical solution of such optimization problems requires the computation of derivatives of the model output with respect to model parameters. The first order derivatives of a cost functional (defined on the model output) with respect to a large number of model parameters can be calculated efficiently through first order adjoint sensitivity analysis. Second order adjoint models give second derivative information in the form of matrix-vector products between the Hessian of the cost functional and user defined vectors. Traditionally, the construction of second order derivatives for large scale models has been considered too costly. Consequently, data assimilation applications employ optimization algorithms that use only first order derivative information, like nonlinear conjugate gradients and quasi-Newton methods. In this paper we discuss the mathematical foundations of second order adjoint sensitivity analysis and show that it provides an efficient approach to obtain Hessian-vector products. We study the benefits of using of second order information in the numerical optimization process for data assimilation applications. The numerical studies are performed in a twin experiment setting with a two-dimensional shallow water model. Different scenarios are considered with different discretization approaches, observation sets, and noise levels. Optimization algorithms that employ second order derivatives are tested against widely used methods that require only first order derivatives. Conclusions are drawn regarding the potential benefits and the limitations of using high-order information in large scale data assimilation problems

    Radio Astronomical Image Formation using Constrained Least Squares and Krylov Subspaces

    Full text link
    Image formation for radio astronomy can be defined as estimating the spatial power distribution of celestial sources over the sky, given an array of antennas. One of the challenges with image formation is that the problem becomes ill-posed as the number of pixels becomes large. The introduction of constraints that incorporate a-priori knowledge is crucial. In this paper we show that in addition to non-negativity, the magnitude of each pixel in an image is also bounded from above. Indeed, the classical "dirty image" is an upper bound, but a much tighter upper bound can be formed from the data using array processing techniques. This formulates image formation as a least squares optimization problem with inequality constraints. We propose to solve this constrained least squares problem using active set techniques, and the steps needed to implement it are described. It is shown that the least squares part of the problem can be efficiently implemented with Krylov subspace based techniques, where the structure of the problem allows massive parallelism and reduced storage needs. The performance of the algorithm is evaluated using simulations
    • …
    corecore