130,266 research outputs found

    Quick-Time VRTM: when medical education meets virtual reality

    Get PDF
    Learning medicine is a difficult process to undertake, partially due to the complexity of the subject and limitations of traditional methods of teaching (lectures, textbooks, laboratory and anatomical dissections). These resources have been effective for decades, even though presenting intrinsic drawbacks. Textbooks are non-interactive education tools and do not provide any three dimensional experience. Cadaver dissection is an invaluable aid to learn anatomy. It provides an immersive, interactive experience allied with an inimitable tactile feedback. However, it has several limitations, including availability of specimens, costs and a substantial time commitment. Computer based virtual reality methods may overcome these drawbacks and provide interesting alternatives for medical training. Technological advances have generated great expectations for the use of computer-based virtual reality technologies in medical education, mainly anatomy and surgery. However, these Virtual Reality tools for general medical education are expensive due to the equipment necessary to create highly detailed, immersive three-dimensional image environments with real time friendly user interactivity. The concepts of Virtual Reality methods that generate immersive environments, as well as those that create simulated objects with interactive viewing features may be contemplated by the QuickTimeTM which is one of the technologies that can be successfully used for interactive, photorealistic displaying of medical images (radiological, anatomical and histological) and interaction on current generation of personal computers at a low and accessible cost. In this paper, the authors provide an overview of the Quick Time Virtual Reality methods aimingLearning medicine is a difficult process to undertake, partially due to the complexity of the subject and limitations of traditional methods of teaching (lectures, textbooks, laboratory and anatomical dissections). These resources have been effective for decades, even though presenting intrinsic drawbacks. Textbooks are non-interactive education tools and do not provide any three dimensional experience. Cadaver dissection is an invaluable aid to learn anatomy. It provides an immersive, interactive experience allied with an inimitable tactile feedback. However, it has several limitations, including availability of specimens, costs and a substantial time commitment. Computer based virtual reality methods may overcome these drawbacks and provide interesting alternatives for medical training. Technological advances have generated great expectations for the use of computer-based virtual reality technologies in medical education, mainly anatomy and surgery. However, these Virtual Reality tools for general medical education are expensive due to the equipment necessary to create highly detailed, immersive three-dimensional image environments with real time friendly user interactivity. The concepts of Virtual Reality methods that generate immersive environments, as well as those that create simulated objects with interactive viewing features may be contemplated by the QuickTimeTM which is one of the technologies that can be successfully used for interactive, photorealistic displaying of medical images (radiological, anatomical and histological) and interaction on current generation of personal computers at a low and accessible cost. In this paper, the authors provide an overview of the Quick Time Virtual Reality methods aiming to introduce them to medical educators and illustrate their application on medical training

    Building a Open Source Framework for Virtual Medical Training

    Get PDF
    This paper presents a framework to build medical training applications by using virtual reality and a tool that helps the class instantiation of this framework. The main purpose is to make easier the building of virtual reality applications in the medical training area, considering systems to simulate biopsy exams and make available deformation, collision detection, and stereoscopy functionalities. The instantiation of the classes allows quick implementation of the tools for such a purpose, thus reducing errors and offering low cost due to the use of open source tools. Using the instantiation tool, the process of building applications is fast and easy. Therefore, computer programmers can obtain an initial application and adapt it to their needs. This tool allows the user to include, delete, and edit parameters in the functionalities chosen as well as storing these parameters for future use. In order to verify the efficiency of the framework, some case studies are presented

    Engineering functional and anthropomorphic models for surgical training in interventional radiology: A state-of-the-art review

    Get PDF
    Training medical students in surgical procedures and evaluating their performance are both necessary steps to ensure the safety and efficacy of surgeries. Traditionally, trainees practiced on live patients, cadavers or animals under the supervision of skilled physicians, but realistic anatomical phantom models have provided a low-cost alternative because of the advance of material technology that mimics multi-layer tissue structures. This setup provides safer and more efficient training. Many research prototypes of phantom models allow rapid in-house prototyping for specific geometries and tissue properties. The gel-based method and 3D printing-based method are two major methods for developing phantom prototypes. This study excluded virtual reality based technologies and focused on physical phantoms, total 189 works published between 2015 and 2020 on anatomical phantom prototypes made for interventional radiology were reviewed in terms of their functions and applications. The phantom prototypes were first categorized based on fabrication methods and then subcategorized based on the organ or body part they simulated; the paper is organized accordingly. Engineering specifications and applications were analyzed and summarized for each study. Finally, current challenges in the development of phantom models and directions for future work were discussed

    Patient-specific 3D printed soft models for liver surgical planning and hands-on training

    Get PDF
    Background: Pre-surgical simulation-based training with three-dimensional (3D) models has been intensively developed in complex surgeries in recent years. This is also the case in liver surgery, although with fewer reported examples. The simulation-based training with 3D models represents an alternative to current surgical simulation methods based on animal or ex vivo models or virtual reality (VR), showing reported advantages, which makes the development of realistic 3D-printed models an option. This work presents an innovative, low-cost approach for producing patient-specific 3D anatomical models for hands-on simulation and training. Methods: The article reports three paediatric cases presenting complex liver tumours that were transferred to a major paediatric referral centre for treatment: hepatoblastoma, hepatic hamartoma and biliary tract rhabdomyosarcoma. The complete process of the additively manufactured liver tumour simulators is described, and the different steps for the correct development of each case are explained: (1) medical image acquisition; (2) segmentation; (3) 3D printing; (4) quality control/validation; and (5) cost. A digital workflow for liver cancer surgical planning is proposed. Results: Three hepatic surgeries were planned, with 3D simulators built using 3D printing and silicone moulding techniques. The 3D physical models showed highly accurate replications of the actual condition. Additionally, they proved to be more cost-effective in comparison with other models. Conclusions: It is demonstrated that it is possible to manufacture accurate and cost-effective 3D-printed soft surgical planning simulators for treating liver cancer. The 3D models allowed for proper pre-surgical planning and simulation training in the three cases reported, making it a valuable aid for surgeons.The research undertaken in this paper has been partially funded by the QuirofAM project (Exp. COMRDI16-1-0011) co-financed by the European Union through the European Regional Development Fund FEDER with the support of ACCIÓ-Generalitat de Catalunya 2014–2020.Peer ReviewedPostprint (published version

    Piloting mobile mixed reality simulation in paramedic distance education

    Get PDF
    New pedagogical methods delivered through mobile mixed reality (via a user-supplied mobile phone incorporating 3d printing and augmented reality) are becoming possible in distance education, shifting pedagogy from 2D images, words and videos to interactive simulations and immersive mobile skill training environments. This paper presents insights from the implementation and testing of a mobile mixed reality intervention in an Australian distance paramedic science classroom. The context of this mobile simulation study is skills acquisition in airways management focusing on direct laryngoscopy with foreign body removal. The intervention aims to assist distance education learners in practicing skills prior to attending mandatory residential schools and helps build a baseline equality between those students that study face to face and those at a distance. Outcomes from the pilot study showed improvements in several key performance indicators in the distance learners, but also demonstrated problems to overcome in the pedagogical method

    Virtual Reality applied to biomedical engineering

    Get PDF
    Actualment, la realitat virtual esta sent tendència i s'està expandint a l'àmbit mèdic, fent possible l'aparició de nombroses aplicacions dissenyades per entrenar metges i tractar pacients de forma més eficient, així com optimitzar els processos de planificació quirúrgica. La necessitat mèdica i objectiu d'aquest projecte és fer òptim el procés de planificació quirúrgica per a cardiopaties congènites, que compren la reconstrucció en 3D del cor del pacient i la seva integració en una aplicació de realitat virtual. Seguint aquesta línia s’ha combinat un procés de modelat 3D d’imatges de cors obtinguts gracies al Hospital Sant Joan de Déu i el disseny de l’aplicació mitjançant el software Unity 3D gracies a l’empresa VISYON. S'han aconseguit millores en quant al software emprat per a la segmentació i reconstrucció, i s’han assolit funcionalitats bàsiques a l’aplicació com importar, moure, rotar i fer captures de pantalla en 3D de l'òrgan cardíac i així, entendre millor la cardiopatia que s’ha de tractar. El resultat ha estat la creació d'un procés òptim, en el que la reconstrucció en 3D ha aconseguit ser ràpida i precisa, el mètode d’importació a l’app dissenyada molt senzill, i una aplicació que permet una interacció atractiva i intuïtiva, gracies a una experiència immersiva i realista per ajustar-se als requeriments d'eficiència i precisió exigits en el camp mèdic
    • …
    corecore