680 research outputs found

    Performance enhancement for LTE and beyond systems

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyWireless communication systems have undergone fast development in recent years. Based on GSM/EDGE and UMTS/HSPA, the 3rd Generation Partnership Project (3GPP) specified the Long Term Evolution (LTE) standard to cope with rapidly increasing demands, including capacity, coverage, and data rate. To achieve this goal, several key techniques have been adopted by LTE, such as Multiple-Input and Multiple-Output (MIMO), Orthogonal Frequency-Division Multiplexing (OFDM), and heterogeneous network (HetNet). However, there are some inherent drawbacks regarding these techniques. Direct conversion architecture is adopted to provide a simple, low cost transmitter solution. The problem of I/Q imbalance arises due to the imperfection of circuit components; the orthogonality of OFDM is vulnerable to carrier frequency offset (CFO) and sampling frequency offset (SFO). The doubly selective channel can also severely deteriorate the receiver performance. In addition, the deployment of Heterogeneous Network (HetNet), which permits the co-existence of macro and pico cells, incurs inter-cell interference for cell edge users. The impact of these factors then results in significant degradation in relation to system performance. This dissertation aims to investigate the key techniques which can be used to mitigate the above problems. First, I/Q imbalance for the wideband transmitter is studied and a self-IQ-demodulation based compensation scheme for frequencydependent (FD) I/Q imbalance is proposed. This combats the FD I/Q imbalance by using the internal diode of the transmitter and a specially designed test signal without any external calibration instruments or internal low-IF feedback path. The instrument test results show that the proposed scheme can enhance signal quality by 10 dB in terms of image rejection ratio (IRR). In addition to the I/Q imbalance, the system suffers from CFO, SFO and frequency-time selective channel. To mitigate this, a hybrid optimum OFDM receiver with decision feedback equalizer (DFE) to cope with the CFO, SFO and doubly selective channel. The algorithm firstly estimates the CFO and channel frequency response (CFR) in the coarse estimation, with the help of hybrid classical timing and frequency synchronization algorithms. Afterwards, a pilot-aided polynomial interpolation channel estimation, combined with a low complexity DFE scheme, based on minimum mean squared error (MMSE) criteria, is developed to alleviate the impact of the residual SFO, CFO, and Doppler effect. A subspace-based signal-to-noise ratio (SNR) estimation algorithm is proposed to estimate the SNR in the doubly selective channel. This provides prior knowledge for MMSE-DFE and automatic modulation and coding (AMC). Simulation results show that this proposed estimation algorithm significantly improves the system performance. In order to speed up algorithm verification process, an FPGA based co-simulation is developed. Inter-cell interference caused by the co-existence of macro and pico cells has a big impact on system performance. Although an almost blank subframe (ABS) is proposed to mitigate this problem, the residual control signal in the ABS still inevitably causes interference. Hence, a cell-specific reference signal (CRS) interference cancellation algorithm, utilizing the information in the ABS, is proposed. First, the timing and carrier frequency offset of the interference signal is compensated by utilizing the cross-correlation properties of the synchronization signal. Afterwards, the reference signal is generated locally and channel response is estimated by making use of channel statistics. Then, the interference signal is reconstructed based on the previous estimate of the channel, timing and carrier frequency offset. The interference is mitigated by subtracting the estimation of the interference signal and LLR puncturing. The block error rate (BLER) performance of the signal is notably improved by this algorithm, according to the simulation results of different channel scenarios. The proposed techniques provide low cost, low complexity solutions for LTE and beyond systems. The simulation and measurements show good overall system performance can be achieved

    Reference Receiver Based Digital Self-Interference Cancellation in MIMO Full-Duplex Transceivers

    Full text link
    In this paper we propose and analyze a novel self-interference cancellation structure for in-band MIMO full-duplex transceivers. The proposed structure utilizes reference receiver chains to obtain reference signals for digital self-interference cancellation, which means that all the transmitter-induced nonidealities will be included in the digital cancellation signal. To the best of our knowledge, this type of a structure has not been discussed before in the context of full-duplex transceivers. First, we will analyze the overall achievable performance of the proposed cancellation scheme, while also providing some insight into the possible bottlenecks. We also provide a detailed formulation of the actual cancellation procedure, and perform an analysis into the effect of the received signal of interest on self-interference coupling channel estimation. The achieved performance of the proposed reference receiver based digital cancellation procedure is then assessed and verified with full waveform simulations. The analysis and waveform simulation results show that under practical transmitter RF/analog impairment levels, the proposed reference receiver based cancellation architecture can provide substantially better self-interference suppression than any existing solution, despite deploying only low-complexity linear digital processing.Comment: 7 pages, 4 figures. To be presented in the 2014 IEEE Broadband Wireless Access Worksho

    Modeling and Efficient Cancellation of Nonlinear Self-Interference in MIMO Full-Duplex Transceivers

    Full text link
    This paper addresses the modeling and digital cancellation of self-interference in in-band full-duplex (FD) transceivers with multiple transmit and receive antennas. The self-interference modeling and the proposed nonlinear spatio-temporal digital canceller structure takes into account, by design, the effects of I/Q modulator imbalances and power amplifier (PA) nonlinearities with memory, in addition to the multipath self-interference propagation channels and the analog RF cancellation stage. The proposed solution is the first cancellation technique in the literature which can handle such a self-interference scenario. It is shown by comprehensive simulations with realistic RF component parameters and with two different PA models to clearly outperform the current state-of-the-art digital self-interference cancellers, and to clearly extend the usable transmit power range.Comment: 7 pages, 5 figures. To be presented in the 2014 International Workshop on Emerging Technologies for 5G Wireless Cellular Network

    Low Complexity Joint Impairment Mitigation of I/Q Modulator and PA Using Neural Networks

    Get PDF
    neural networks (NNs) for multiple hardware impairments mitigation of a realistic direct conversion transmitter are impractical due to high computational complexity. We propose two methods to reduce the complexity without significant performance penalty. First, propose a novel NN with shortcut connections, referred to as shortcut real-valued time-delay neural network (SVDEN), where trainable neuron-wise shortcut connections are added between the input and output layers. Second, we implement a NN pruning algorithm that gradually removes connections corresponding to minimal weight magnitudes in each layer. Simulation and experimental results show that SVDEN with pruning achieves better performance for compensating frequency-dependent quadrature imbalance and power amplifier nonlinearity than other NN-based and Volterra-based models, while requiring less or similar complexity

    Self-IQ-Demodulation Based Compensation Scheme of Frequency-Dependent IQ Imbalance for Wideband Direct-Conversion Transmitters

    Get PDF
    A low cost frequency-dependent (FD) I/Q imbalance self-compensation scheme is investigated in this paper. The direct conversion transmitters are widely used in wireless systems. However, the unwanted image-frequencies and distortions are inevitably introduced into the direct conversion system. This problem is even severer in wideband systems. Therefore, the accurate estimation and compensation of I/Q imbalance is crucial. The current compensation method is based on external instruments or internal feedback path which introduces additional impairments and is expensive. This paper proposes a low cost FD I/Q imbalance self-IQ-demodulation based compensation scheme without using external calibration instruments. First, the impairments of baseband and RF components are investigated. Further, I/Q imbalance model is developed. Then, the proposed two-step self-IQ-demodulation based compensation scheme is investigated. In the first step of the scheme, the local oscillator (LO) related I/Q impairments parameters are estimated. Then in the second step, the overall FD I/Q imbalance parameters are estimated by utilizing the transmitter LO. To realize this self-IQ-demodulation algorithm, this paper introduces minor modifications to the current power detector circuit. Afterwards, the estimated parameters are applied to the baseband equivalent compensator. This sophisticated algorithm guarantees low computation complexity and low cost. The compensation performance is evaluated in laboratory measurement

    IQ imbalance in OFDM wireless LAN systems

    Get PDF
    • …
    corecore