2 research outputs found

    SCADA system for online electrical engineering education

    Get PDF
    Renewable energy sources are increasingly being integrated into small-scale production systems, so plants with multiple supply sources are becoming more common. This improvement in technology added to a greater social awareness of energy saving and resource usage, which makes flexible systems to manage these facilities necessary. Modern energy management can be more accessible to the interested public if it is located in universities, making it available to teachers and students alike. Furthermore, as it is a developing field of study, its location on campus facilitates research, maintenance, and financing. In this scenario, a SCADA system is proposed, capable of monitoring and centrally storing the values of the most important production and consumption parameters. In addition, by using this system, it is possible to control the state of the different energy sources in a centralized way, as well as their distribution in the plant where it is implemented. This study focuses on the management of a flexible, modern, and accessible solution to the advances in electrical systems because of technological development in this field, which broadens the experience of university teachers and students in their engineering careers. The systems have been put into practice in the facilities of a research and teaching laboratory at the University of Almeria, which integrates renewable and conventional energy resources

    Low-cost SCADA platforms for a solar energy system

    Get PDF
    Conventional energy has been used from ancient times. Coal, natural gas, oil, uranium, and firewood are example of conventional source. These sources are consider the main source of air pollution. So, it is desired to use clean energy sources such as solar power, wind turbine, and hydro-electric power. We need to monitor and control parameters of clean energy sources when they are working as a power source. In this research, few low-cost Supervisory Control and Data Acquisition (SCADA) systems have been designed for a small photovoltaic system to save data in a text file and show it on monitor screen as a number or graph. The proposed system is designed using four methods. The first method, is based on low cost sensors, Arduino Uno, and Raspberry pi. These components are connected together to send data to web server on the internet (www.ubidots.com). Second method, is based on three things: low cost sensors, Arduino Uno, and free Reliance SCADA software. In this method, the data is sent to user interface -which are created by Reliance Software- from Arduino by using mini USB. Third method, is based on a low-cost ESP32, SD card reader, Wi-Fi, and sensors. The purpose of SD card is to save data as text file which come from sensors by ESP32, and it saves on a web page as well. Wi Fi of ESP32 is used to access to the file of data using a computer, a tablet, or cell phone and it could be download easily. Last method, is based on low cost sensors and Arduino LoRa. In this method, the data of photovoltaic system has been sent to a control room which is located 1km from photovoltaic system location. LoRa is used to send the data instead of mini USB and Wi Fi. This thesis, which describes the details of all the four SCADA system for a PV system at MUN, presents a comparison among them
    corecore