49,479 research outputs found

    Construction of self-dual normal bases and their complexity

    Get PDF
    Recent work of Pickett has given a construction of self-dual normal bases for extensions of finite fields, whenever they exist. In this article we present these results in an explicit and constructive manner and apply them, through computer search, to identify the lowest complexity of self-dual normal bases for extensions of low degree. Comparisons to similar searches amongst normal bases show that the lowest complexity is often achieved from a self-dual normal basis

    Lemma for Linear Feedback Shift Registers and DFTs Applied to Affine Variety Codes

    Full text link
    In this paper, we establish a lemma in algebraic coding theory that frequently appears in the encoding and decoding of, e.g., Reed-Solomon codes, algebraic geometry codes, and affine variety codes. Our lemma corresponds to the non-systematic encoding of affine variety codes, and can be stated by giving a canonical linear map as the composition of an extension through linear feedback shift registers from a Grobner basis and a generalized inverse discrete Fourier transform. We clarify that our lemma yields the error-value estimation in the fast erasure-and-error decoding of a class of dual affine variety codes. Moreover, we show that systematic encoding corresponds to a special case of erasure-only decoding. The lemma enables us to reduce the computational complexity of error-evaluation from O(n^3) using Gaussian elimination to O(qn^2) with some mild conditions on n and q, where n is the code length and q is the finite-field size.Comment: 37 pages, 1 column, 10 figures, 2 tables, resubmitted to IEEE Transactions on Information Theory on Jan. 8, 201
    • …
    corecore