2 research outputs found

    Fundamental Limits on Performance for Cooperative Radar-Communications Coexistence

    Get PDF
    abstract: Spectral congestion is quickly becoming a problem for the telecommunications sector. In order to alleviate spectral congestion and achieve electromagnetic radio frequency (RF) convergence, communications and radar systems are increasingly encouraged to share bandwidth. In direct opposition to the traditional spectrum sharing approach between radar and communications systems of complete isolation (temporal, spectral or spatial), both systems can be jointly co-designed from the ground up to maximize their joint performance for mutual benefit. In order to properly characterize and understand cooperative spectrum sharing between radar and communications systems, the fundamental limits on performance of a cooperative radar-communications system are investigated. To facilitate this investigation, performance metrics are chosen in this dissertation that allow radar and communications to be compared on the same scale. To that effect, information is chosen as the performance metric and an information theoretic radar performance metric compatible with the communications data rate, the radar estimation rate, is developed. The estimation rate measures the amount of information learned by illuminating a target. With the development of the estimation rate, standard multi-user communications performance bounds are extended with joint radar-communications users to produce bounds on the performance of a joint radar-communications system. System performance for variations of the standard spectrum sharing problem defined in this dissertation are investigated, and inner bounds on performance are extended to account for the effect of continuous radar waveform optimization, multiple radar targets, clutter, phase noise, and radar detection. A detailed interpretation of the estimation rate and a brief discussion on how to use these performance bounds to select an optimal operating point and achieve RF convergence are provided.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Low Power Wireless Communication via Reinforcement Learning

    No full text
    This paper examines the application of reinforcement learning to a wireless communication problem. The problem requires that channel utility be maximized while simultaneously minimizing battery usage. We present a solution to this multi-criteria problem that is able to significantly reduce power consumption. The solution uses a variable discount factor to capture the effects of battery usage. 1 Introduction Reinforcement learning (RL) has been applied to resource allocation problems in telecommunications, e.g., channel allocation in wireless systems, network routing, and admission control in telecommunication networks [1, 2, 8, 10]. These have demonstrated reinforcement learning can find good policies that significantly increase the application reward within the dynamics of the telecommunication problems. However, a key issue is how to treat the commonly occurring multiple reward and constraint criteria in a consistent way. This paper will focus on power management for wireless ..
    corecore