194 research outputs found

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks

    Get PDF
    MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deployment of mmWave base stations were proposed. This Thesis aims to improve the reliability and performance of the 5G network by studying its tight and seamless integration with the current LTE cellular network. In particular, the LTE base stations can provide a coverage layer for 5G mobile terminals, because they operate on microWave frequencies, which are less sensitive to blockage and have a lower pathloss. This document is a copy of the Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorzi. It will propose an LTE-5G tight integration architecture, based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns-3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G.Comment: Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorz

    Packet forwarding for heterogeneous technologies for integrated fronthaul/backhaul

    Get PDF
    Proceeding of: 2016 European Conference on Networks and Communications (EuCNC)To meet the future mobile user demand at a reduced cost, operators are looking at solutions such as C-RAN and different functional splits to decrease the cost of deploying and maintaining cell sites. The use of these technologies forces operators to manage two physically separated networks, one for backhaul and one for fronthaul. To solve this issue, transport networks for 5G will carry both fronthaul and backhaul traffic operating over heterogeneous data plane technologies. Such an integrated fronthaul/backhaul (denoted as 5G-Crosshaul) transport network will be software-controlled to adapt to the fluctuating capacity demand of the new generation air interfaces. Based on a proposed data- and control-plane architecture for 5G-Crosshaul, we propose a frame format common to both fronthaul and backhaul traffic as well as a corresponding abstraction of the forwarding behavior of the network elements. The common frame format and the forwarding abstraction define the information to be exchanged at the southbound interface (SBI) of the 5G-Crosshaul Control Infrastructure (XCI). This paper derives requirements for the SBI from 5G use cases.The authors of this paper have been sponsored in part by the project H2020-ICT-2014-2 “5G-Crosshaul”: The 5G integrated fronthaul/backhaul” (671598

    Frame Structure Design and Analysis for Millimeter Wave Cellular Systems

    Full text link
    The millimeter-wave (mmWave) frequencies have attracted considerable attention for fifth generation (5G) cellular communication as they offer orders of magnitude greater bandwidth than current cellular systems. However, the medium access control (MAC) layer may need to be significantly redesigned to support the highly directional transmissions, ultra-low latencies and high peak rates expected in mmWave communication. To address these challenges, we present a novel mmWave MAC layer frame structure with a number of enhancements including flexible, highly granular transmission times, dynamic control signal locations, extended messaging and ability to efficiently multiplex directional control signals. Analytic formulae are derived for the utilization and control overhead as a function of control periodicity, number of users, traffic statistics, signal-to-noise ratio and antenna gains. Importantly, the analysis can incorporate various front-end MIMO capability assumptions -- a critical feature of mmWave. Under realistic system and traffic assumptions, the analysis reveals that the proposed flexible frame structure design offers significant benefits over designs with fixed frame structures similar to current 4G long-term evolution (LTE). It is also shown that fully digital beamforming architectures offer significantly lower overhead compared to analog and hybrid beamforming under equivalent power budgets.Comment: Submitted to IEEE Transactions for Wireless Communication

    Network planning for the future railway communications

    Get PDF
    Los Sistemas Inteligentes de Transporte están cambiando la forma en que concebimos el futuro de la movilidad. En particular, los ferrocarriles están experimentando un proceso de transformación para modernizar el transporte público y las operaciones ferroviarias. Tecnologías como el 5G, la fibra óptica y la nube han surgido como catalizadores para digitalizar el ferrocarril proporcionando comunicaciones de alta velocidad y baja latencia. Este TFG se centra en la exploración de redes que permitan el control del tren y la transmisión de datos a bordo. El objetivo es planificar la infraestructura de red (dimensionamiento y asignación de recursos) necesaria para las futuras comunicaciones del sistema ferroviario de larga distancia de la Deutsche Bahn en Alemania. En este trabajo, proponemos una arquitectura de red que puede satisfacer los requisitos de rendimiento de las aplicaciones para trenes y pasajeros. Presentamos un método para la colocación de estaciones base 5G a lo largo de las vías del tren para garantizar el rendimiento necesario en el borde de la celda. Por último, presentamos el problema de colocación y asignación de centros de datos. El objetivo es encontrar el número necesario de centros de datos y su ubicación en la red, y asignarlos a cada estación de tren. Realizamos simulaciones en cuatro escenarios diferentes, en los que modificamos parámetros de entrada como la latencia máxima tolerada y el número máximo de centros de datos. Los resultados obtenidos muestran el compromiso entre la latencia alcanzada y el coste de la infraestructura.Els Sistemes Intel·ligents de Transport estan canviant la manera en què concebem el futur de la mobilitat. En particular, els ferrocarrils estan experimentant un procés de transformació per modernitzar el transport públic i les operacions ferroviàries. Tecnologies com el 5G, la fibra òptica i el núvol han sorgit com a catalitzadors per digitalitzar el ferrocarril proporcionant comunicacions d'alta velocitat i baixa latència. Aquest TFG se centra en l'exploració de xarxes que permetin el control dels trens i la transmissió de dades a bord. L'objectiu és planificar la infraestructura de xarxa (dimensionament i assignació de recursos) necessària per a les futures comunicacions del sistema ferroviari de llarga distància de la Deutsche Bahn a Alemanya. En aquest treball, proposem una arquitectura de xarxa que pot satisfer els requisits de rendiment de les aplicacions per a trens i passatgers. Presentem un mètode per a la col·locació d'estacions base 5G al llarg de les vies del tren per garantir el rendiment necessari a la vora de la cel·la. Per últim, presentem el problema de col·locació i assignació de centres de dades. L'objectiu és trobar el nombre necessari de centres de dades i la seva ubicació a la xarxa, i assignar-los a cada estació de tren. Realitzem simulacions en quatre escenaris diferents, on modifiquem paràmetres d'entrada com la latència màxima tolerada i el nombre màxim de centres de dades. Els resultats obtinguts mostren el compromís entre la latència assolida i el cost de la infraestructura.Smart Transportation Systems are changing the way we conceive the future of mobility. In particular, railways are undergoing a transformation process to modernize public transportation and rail operation. Technologies like 5G, optical fiber and the cloud have emerged as catalysts to digitalize the railway by providing high-speed and low-latency communications. This bachelor's thesis focuses on the exploration of networks enabling train control and on-board data communications. The goal is to plan the network infrastructure (dimensioning and resource allocation) needed for the future communications in the train mobility scenario for Deutsche Bahn's long-distance railway system in Germany. In this work, we propose a network architecture that can meet the performance requirements of train and passenger applications. We present an approach for 5G base station placement along the rail tracks to guarantee the necessary throughput at the cell edge. Finally, we introduce the data center placement and assignment problem. The objective is to find the required number of data centers and their location in the network, and to assign them to each train station. We perform simulations in four different scenarios, in which we modify input parameters such as the maximum tolerated latency and the maximum number of data centers. The obtained results show the trade-off between the achieved latency and the infrastructure cost

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner
    corecore