140,855 research outputs found
Vagal nerve stimulation therapy: what is being stimulated?
Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity
Discussion: Advanced Technologies to Improve Wound Healing: Electrical Stimulation, Vibration Therapy, and Ultrasound-What Is the Evidence?
Preconditioning of mesenchymal stromal cells with low-intensity ultrasound: influence on chondrogenesis and directed SOX9 signaling pathways
Background: Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS.
Methods: Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting.
Results: cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2.
Conclusions: Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS
Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology
For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a "gold key” has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research
The Efficacy of Pressure Ulcer Treatment With Cathodal and Cathodal-Anodal High-Voltage Monophasic Pulsed Current: A Prospective, Randomized, Controlled Clinical Trial
Background. Studies show that anode and cathode electrical stimulation (ES) promotes the healing of wounds, but specific protocols for both electrodes are not available.
Objective. To compare the effectiveness of cathodal versus cathodal+anodal ES in the treatment of Category II-IV pressure ulcers (PrUs).
Design. Prospective, randomized, controlled, clinical study.
Setting. Three nursing and care centers.
Patients. Sixty-three participants with PrUs were randomly formed into a cathodal ES group (CG: N = 23; mean age of 79.35; SD 8.48), a cathodal+anodal ES group (CAG: N = 20; mean age of 79.65; SD 11.44) and a placebo ES group (PG: N = 20; mean age of 76.75; SD 12.24).
Intervention. All patients were treated with standard wound care and high-voltage monophasic pulsed current (HVMPC; twin-peak impulses; 154 μs; 100 pps; 0.25 A; 250 μC/s) for 50 minutes per day, 5 times a week, for 6 weeks. The CG, CAG, and PG received, respectively, cathodal, cathodal+anodal, and sham ES through electrodes placed on a moist gauze pad. The treatment electrode was placed on the wound, and the return electrode was positioned on healthy skin at least 20 cm from the PrU.
Measurements. Measurements were made at baseline, and after each of the 6 weeks of treatment. Primary outcome was percentage wound surface area reduction at week 6.
Results. Wound surface area decreased in the CG by 82.34% (95% confidence interval [CI] 70.06-94.63) and in the CAG by 70.77% (95% CI 53.51-88.04). These reductions were significantly greater than in the PG (40.53%; 95% CI 23.60-57.46). The CG and CAG were not statistically significantly different regarding treatment results.
Limitations. The time of treatment proved insufficient for PrUs to close.
Conclusions. Cathodal and cathodal+anodal HVMPC similarly reduced the area of Category II-IV PrU
Non-invasive brain stimulation techniques for chronic pain
Copyright © 2014 The Cochrane Collaboration.Various devices are available that can electrically stimulate the brain without the need for surgery or any invasive treatment in order to manage chronic pain. There are four main treatment types: repetitive transcranial magnetic stimulation (rTMS) in which the brain is stimulated by a coil applied to the scalp, cranial electrotherapy stimulation (CES) in which electrodes are clipped to the ears or applied to the scalp, transcranial direct current stimulation (tDCS) and reduced impedance non-invasive cortical electrostimulation (RINCE) in which electrodes are applied to the scalp. These have been used to try to reduce pain by aiming to alter the activity of the brain, but the efficacy of these treatments is uncertain.
This review update included 56 studies: 30 of rTMS, 11 of CES, 14 of tDCS and one of RINCE. We judged only three studies as having a low risk of bias. Low or very low-quality evidence suggests that low-frequency rTMS and rTMS applied to pre-frontal areas of the brain are not effective but that a single dose of high-frequency stimulation of the motor cortex area of the brain provides short-term pain relief. This effect appears to be small and may be exaggerated by a number of sources of bias. Studies that gave a course of multiple treatments of rTMS produced conflicting results with no overall effect seen when we pooled the results of these studies. Most studies of rTMS are small and there is substantial variation between studies in terms of the treatment methods used. Low-quality evidence does not suggest that CES or tDCS are effective treatments for chronic pain. A single small study of RINCE provided very low-quality evidence of a short-term effect on pain. For all forms of stimulation the evidence is not conclusive and uncertainty remains.
The reporting of side effects varied across the studies. Of the studies that clearly reported side effects, short-lived and minor side effects such as headache, nausea and skin irritation were usually reported both after real and sham stimulation. There were two reports of seizure following real rTMS.
While the broad conclusions for rTMS and CES have not changed substantially, the addition of this new evidence and the application of the GRADE system has modified some of our interpretation. Previous readers should re-read this update.
More studies of rigorous design and adequate size are required to evaluate accurately all forms of non-invasive brain stimulation for the treatment of chronic pain
Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation
Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration
The efficacy of transcranial current stimulation techniques to modulate resting-state EEG, to affect vigilance and to promote sleepiness
Transcranial Current Stimulations (tCSs) are non-invasive brain stimulation techniques which modulate cortical excitability and spontaneous brain activity by the application of weak electric currents through the scalp, in a safe, economic, and well-tolerated manner. The direction of the cortical effects mainly depend on the polarity and the waveform of the applied current. The aim of the present work is to provide a broad overview of recent studies in which tCS has been applied to modulate sleepiness, sleep, and vigilance, evaluating the efficacy of different stimulation techniques and protocols. In recent years, there has been renewed interest in these stimulations and their ability to affect arousal and sleep dynamics. Furthermore, we critically review works that, by means of stimulating sleep/vigilance patterns, in the sense of enhancing or disrupting them, intended to ameliorate several clinical conditions. The examined literature shows the efficacy of tCSs in modulating sleep and arousal pattern, likely acting on the top-down pathway of sleep regulation. Finally, we discuss the potential application in clinical settings of this neuromodulatory technique as a therapeutic tool for pathological conditions characterized by alterations in sleep and arousal domains and for sleep disorders per se
An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for the conservative and nonpharmacological management of female pelvic floor dysfunction
There has been an increasing need for the terminology on the conservative management of female pelvic floor dysfunction to be collated in a clinically based consensus report.This Report combines the input of members and elected nominees of the Standardization and Terminology Committees of two International Organizations, the International Urogynecological Association (IUGA) and the International Continence Society (ICS), assisted at intervals by many external referees. An extensive process of nine rounds of internal and external review was developed to exhaustively examine each definition, with decision-making by collective opinion (consensus). Before opening up for comments on the webpages of ICS and IUGA, five experts from physiotherapy, neurology, urology, urogynecology, and nursing were invited to comment on the paper.A Terminology Report on the conservative management of female pelvic floor dysfunction, encompassing over 200 separate definitions, has been developed. It is clinically based, with the most common symptoms, signs, assessments, diagnoses, and treatments defined. Clarity and ease of use have been key aims to make it interpretable by practitioners and trainees in all the different specialty groups involved in female pelvic floor dysfunction. Ongoing review is not only anticipated, but will be required to keep the document updated and as widely acceptable as possible.A consensus-based terminology report for the conservative management of female pelvic floor dysfunction has been produced, aimed at being a significant aid to clinical practice and a stimulus for research
- …
