1,299 research outputs found

    Potential deep learning approaches for the physical layer

    Get PDF
    Abstract. Deep learning based end-to-end learning of a communications system tries to optimize both transmitter and receiver blocks in a single process in an end-to-end manner, eliminating the need for artificial block structure of the conventional communications systems. Recently proposed concept of autoencoder based end-to-end communications is investigated in this thesis to validate its potential as an alternative to conventional block structured communications systems. A single user scenario in the additive white Gaussian noise (AWGN) channel is considered in this thesis. Autoencoder based systems are implemented equivalent to conventional communications systems and bit error rate (BER) performances of both systems are compared in different system settings. Simulations show that the autoencoder outperforms equivalent uncoded binary phase shift keying (BPSK) system with a 2 dB margin to BPSK for a BER of 10⁻⁵, and has comparable performance to uncoded quadrature phase shift keying (QPSK) system. Autoencoder implementations equivalent to coded BPSK have shown comparable BER performance to hard decision convolutional coding (CC) with less than 1 dB gap over the 0–10 dB Eb/N0 range. Autoencoder is observed to have close performance to the conventional systems for higher code rates. Newly proposed autoencoder model as an alternative to coded systems with higher order modulations has shown that autoencoder is capable of learning better transmission mechanisms compared to the conventional systems adhering to the system parameters and resource constraints provided. Autoencoder equivalent of half-rate 16-quadrature amplitude modulation (16-QAM) system achieves a better performance with respect to hard decision CC over the 0–10 dB Eb/N0 range, and a comparable performance to soft decision CC with a better BER in 0–4 dB Eb/N0. Comparable BER performance, lower processing complexity and low latency processing due to inherent parallel processing architecture, flexible structure and higher learning capacity are identified as advantages of the autoencoder based systems which show their potential and feasibility as an alternative to conventional communications systems

    Benchmarking End-to-end Learning of MIMO Physical-Layer Communication

    Get PDF
    End-to-end data-driven machine learning (ML) of multiple-input multiple-output (MIMO) systems has been shown to have the potential of exceeding the performance of engineered MIMO transceivers, without any a priori knowledge of communication-theoretic principles. In this work, we aim to understand to what extent and for which scenarios this claim holds true when comparing with fair benchmarks. We study closed-loop MIMO, open-loop MIMO, and multi-user MIMO and show that the gains of ML-based communication in the former two cases can be to a large extent ascribed to implicitly learned geometric shaping and bit and power allocation, not to learning new spatial encoders. For MU-MIMO, we demonstrate the feasibility of a novel method with centralized learning and decentralized executing, outperforming conventional zero-forcing. For each scenario, we provide explicit descriptions as well as open-source implementations of the selected neural-network architectures.Comment: 6 pages, 8 figures, conference pape

    Spectrally and Energy Efficient Wireless Communications: Signal and System Design, Mathematical Modelling and Optimisation

    Get PDF
    This thesis explores engineering studies and designs aiming to meeting the requirements of enhancing capacity and energy efficiency for next generation communication networks. Challenges of spectrum scarcity and energy constraints are addressed and new technologies are proposed, analytically investigated and examined. The thesis commences by reviewing studies on spectrally and energy-efficient techniques, with a special focus on non-orthogonal multicarrier modulation, particularly spectrally efficient frequency division multiplexing (SEFDM). Rigorous theoretical and mathematical modelling studies of SEFDM are presented. Moreover, to address the potential application of SEFDM under the 5th generation new radio (5G NR) heterogeneous numerologies, simulation-based studies of SEFDM coexisting with orthogonal frequency division multiplexing (OFDM) are conducted. New signal formats and corresponding transceiver structure are designed, using a Hilbert transform filter pair for shaping pulses. Detailed modelling and numerical investigations show that the proposed signal doubles spectral efficiency without performance degradation, with studies of two signal formats; uncoded narrow-band internet of things (NB-IoT) signals and unframed turbo coded multi-carrier signals. The thesis also considers using constellation shaping techniques and SEFDM for capacity enhancement in 5G system. Probabilistic shaping for SEFDM is proposed and modelled to show both transmission energy reduction and bandwidth saving with advantageous flexibility for data rate adaptation. Expanding on constellation shaping to improve performance further, a comparative study of multidimensional modulation techniques is carried out. A four-dimensional signal, with better noise immunity is investigated, for which metaheuristic optimisation algorithms are studied, developed, and conducted to optimise bit-to-symbol mapping. Finally, a specially designed machine learning technique for signal and system design in physical layer communications is proposed, utilising the application of autoencoder-based end-to-end learning. Multidimensional signal modulation with multidimensional constellation shaping is proposed and optimised by using machine learning techniques, demonstrating significant improvement in spectral and energy efficiencies

    Deep Joint Source-Channel Coding for Wireless Image Transmission

    Get PDF
    We propose a joint source and channel coding (JSCC) technique for wireless image transmission that does not rely on explicit codes for either compression or error correction; instead, it directly maps the image pixel values to the complex-valued channel input symbols. We parameterize the encoder and decoder functions by two convolutional neural networks (CNNs), which are trained jointly, and can be considered as an autoencoder with a non-trainable layer in the middle that represents the noisy communication channel. Our results show that the proposed deep JSCC scheme outperforms digital transmission concatenating JPEG or JPEG2000 compression with a capacity achieving channel code at low signal-to-noise ratio (SNR) and channel bandwidth values in the presence of additive white Gaussian noise (AWGN). More strikingly, deep JSCC does not suffer from the “cliff effect,” and it provides a graceful performance degradation as the channel SNR varies with respect to the SNR value assumed during training. In the case of a slow Rayleigh fading channel, deep JSCC learns noise resilient coded representations and significantly outperforms separation-based digital communication at all SNR and channel bandwidth values
    corecore