487 research outputs found

    Acoustic modelling of bat pinnae utilising the TLM method

    Get PDF
    This thesis describes the numerical modelling of bioacoustic structures, the focus being the outer ear or pinnae of the Rufous Horseshoe bat (Rhinolophus rouxii). There have been several novel developments derived from this work including: • A method of calculating directionality based on the sphere with a distribution of measuring points such that each lies in an equal area segment. • Performance estimation of the pinna by considering the directionality of an equivalent radiating aperture. • A simple synthetic geometry that appears to give similar performance to a bat pinna. The outcome of applying the methods have yielded results that agree with measurements, indeed, this work is the first time TLM has been applied to a structure of this kind. It paves the way towards a greater understanding of bioacoustics and ultimately towards generating synthetic structures that can perform as well as those found in the natural world

    Time- and frequency-domain modeling of passive interconnection structures in field and circuit analysis

    Get PDF
    Die vorliegende Arbeit widmet sich den theoretischen Grundlagen und numerischen Verfahren zur Analyse passiver Verbindungsstrukturen auf der Basis der elektromagnetischen Feld- und Netzwerktheorie. Die Simulation elektromagnetischer Phänomene gewinnt eine immer stärkere Bedeutung sowohl im Entwicklungsprozess elektronischer Komponenten und Systeme als auch bei der EMV-Analyse. Ständig steigende Operationsfrequenzen erfordern die Einbeziehung der passiven Verbindungsstrukturen in die Analyse sowohl im Frequenz- als auch im Zeitbereich. Dabei wächst insbesondere die Bedeutung von Zeitbereichsmethoden bei der Behandlung elektrodynamischer Probleme infolge zunehmender Schaltfrequenzen und immer steilerer Anstiegsflanken. Frequenzbereichsmethoden in Kombination mit der FourierrĂźcktransformation erfordern bei extrem breiten Frequenzspektren einen hohen Rechenaufwand, um ZeitbereichslĂśsungen mit hinreichender Genauigkeit zu erhalten. Im Falle von Nichtlinearitäten sind Zeitbereichsmethoden sogar die einzige MĂśglichkeit. Aus diesem Grunde wird in der vorliegenden Arbeit ein besonderer Schwerpunkt auf die Zeitbereichsmodellierung der Verbindungsstrukturen einschließlich der Schaltungsumgebung sowie die Behandlung mittels Netzwerksimulatoren gelegt.  Throughout the rst period of electrical-engineering history, passive interconnections, i.e., conductors serving as the connection of electronic devices or system components, were typically not considered in the system modeling, except for some special cases and "electrically long" structures, which were successfully described via the transmission-line theory. This changed dramatically after the wide-spread introduction of digital, radio-frequency, and microwave technologies, which required transmission via the passive interconnection structures of high-frequency (HF) signals. The parasitic effects introduced by passive interconnections at high frequencies have motivated modern digital-system designers to consider such interconnections more precisely. &nbsp

    Characterization of an Impulse Radiating Antenna in the Near Field

    Get PDF
    The biological effects of intense sub-nanosecond pulses on tissues or cells are in the dielectric domain and not based on thermal loading as in the conventional microwave radiation, which may lead to an entirely new approach of modifying cell functions. Moreover, the resulting cell functional change may be detected with higher resolution by broadband, sub-nanosecond pulses than conventional narrowband systems. The delivery of intense sub-nanosecond pulses to near-field biological tissues, however, has not been studied, not mentioning the focal depth and volume. In this dissertation, for the first time, an impulse radiating antenna with a balanced feed structure is studied for focusing electromagnetic fields in the near-field for the purpose of therapy and target detection. This antenna has the potential of radiating sub-nanosecond pulses up to 100 kV. It is a travelling wave antenna with the conical transmission lines as the wave launcher. The electric field distribution is studied both through experiment and simulation studies. Results show a close agreement between experimental and simulated results. The antenna focal spot is found to be 32cm wide in axial direction and 10cm wide in lateral direction near the focal point, which is 16cm from the aperture plane. Enhancement of focal spot size and increase of field at the focal point is studied with a dielectric lens. The use of a dielectric lens to match the waves to the target medium increases coupling between the antenna and the target medium, thereby increasing the field strength at focus and decreasing the focal spot size. Experimental study shows an increase in electric field at focus by a factor of 3 and an increase in resolution by a factor of 1.5. The delivery of sub-nanosecond pulses to tissues is studied with the antenna and the combination of the lens and antenna. While a lossless lens may enhance the coupling of the radiation to the tissue, the trend of decreasing in intensity as the wave penetrates remains the same as the case where only an antenna is used. However, the trend can be reversed or modified by a lossy lens, which contains some resistive materials as part of its structure. With a lossy lens, a local maximum forms in the deep region (6cm in depth) of the tissue. The design of such lossy lens is novel and provides an extra means to control the electric field distribution in the target

    Estimation of vocal tract shape trajectory using lossy Kelly-Lochbaum model

    Get PDF
    On esitetty teorioita, joiden mukaan puheen ymmärtämistä helpottaa aikaisempi kokemus puheen tuottamisesta. Muuntamalla akustinen puhesignaali hypoteesiksi puhujan artikulaatioeleistä voidaan saavuttaa puhujariippumattomampi ja äänteitä paremmin erotteleva kuvaus puheesta. Tämä tyÜ esittelee metodin, jolla ääntÜväylän liikeratoja voidaan arvioida suoraan puhesignaaleista. Tässä tyÜssä luodaan Kelly-Lochbaum-tyyppinen ääntÜväylämalli käyttäen apuna puheentuottamisen teoriaa. Malli on varustettu huulisäteilyllä ja säädettävällä huulten pituudella. Mallia käyttäen luodaan hakutaulukko, joka kuvaa vastaavuuksia puheen hetkellisten spektriominaisuuksien ja artikulatoristen muotojen välillä. Hakutaulukkoa voidaan käyttää mappaukseen akustisen ja artikulatorisen avaruuden välillä. Luotua mallia käytetään ääntÜväylän liikeratojen arvioinnissa jatkuvan puheen aikana. Liikeradat lÜydetään käyttämällä yksinkertaista optimointialgoritmia, joka estimoi liikeradan minimoimalla artikulaatioon kuluvaa energiaa.There are theories that during speech perception, the understanding of speech is boosted by the knowledge of the articulatory gestures based on former speech production experience. By transforming an acoustic speech signal into a hypothesis about the articulatory gestures of the speaker, it is possible to obtain a more accurate, speaker-independent description of speech. This thesis introduces a method of estimating vocal tract trajectories from speech signals. Using the theory of speech production, a lossy Kelly-Lochbaum vocal tract model equipped with lip radiation impedance and variable lip rounding length is created. A lookup table consisting of correspondences between spectral qualities of instantaneous speech signals and articulatory shapes is created using this model. The lookup table can be used to perform acoustic-to-articulatory mapping. The obtained model is used in estimation of vocal tract shape trajectories in continuous speech. Smooth and minimum energy trajectories are found by using a simple optimization algorithm

    Transient simulation of complex electronic circuits and systems operating at ultra high frequencies

    Get PDF
    The electronics industry worldwide faces increasingly difficult challenges in a bid to produce ultra-fast, reliable and inexpensive electronic devices. Electronic manufacturers rely on the Electronic Design Automation (EDA) industry to produce consistent Computer A id e d Design (CAD) simulation tools that w ill enable the design of new high-performance integrated circuits (IC), the key component of a modem electronic device. However, the continuing trend towards increasing operational frequencies and shrinking device sizes raises the question of the capability of existing circuit simulators to accurately and efficiently estimate circuit behaviour. The principle objective of this thesis is to advance the state-of-art in the transient simulation of complex electronic circuits and systems operating at ultra high frequencies. Given a set of excitations and initial conditions, the research problem involves the determination of the transient response o f a high-frequency complex electronic system consisting of linear (interconnects) and non-linear (discrete elements) parts with greatly improved efficien cy compared to existing methods and with the potential for very high accuracy in a way that permits an effective trade-off between accuracy and computational complexity. High-frequency interconnect effects are a major cause of the signal degradation encountered b y a signal propagating through linear interconnect networks in the modem IC. Therefore, the development of an interconnect model that can accurately and efficiently take into account frequency-dependent parameters of modem non-uniform interconnect is of paramount importance for state-of-art circuit simulators. Analytical models and models based on a set of tabulated data are investigated in this thesis. Two novel, h igh ly accurate and efficient interconnect simulation techniques are developed. These techniques combine model order reduction methods with either an analytical resonant model or an interconnect model generated from frequency-dependent sparameters derived from measurements or rigorous full-wave simulation. The latter part o f the thesis is concerned with envelope simulation. The complex mixture of profoundly different analog/digital parts in a modern IC gives rise to multitime signals, where a fast changing signal arising from the digital section is modulated by a slower-changing envelope signal related to the analog part. A transient analysis of such a circuit is in general very time-consuming. Therefore, specialised methods that take into account the multi-time nature o f the signal are required. To address this issue, a novel envelope simulation technique is developed. This technique combines a wavelet-based collocation method with a multi-time approach to result in a novel simulation technique that enables the desired trade-off between the required accuracy and computational efficiency in a simple and intuitive way. Furthermore, this new technique has the potential to greatly reduce the overall design cycle

    On The Frequency‐Dependent Model of Grounding Systems for Power System Transient Analysis

    Get PDF

    Switched-capacitor networks for image processing : analysis, synthesis, response bounding, and implementation

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (p. 279-284).by Mark N. Seidel.Sc.D

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented

    Fundamental Properties of Metallic Nanolasers

    Get PDF
    The last two decades have witnessed tremendous advancements in the area of nanophotonics and plasmonics, which has helped propel the development of integrated photonic sources. Of central importance to such circuits is compact, scalable, low threshold, and efficient coherent sources that can be driven at high modulation frequencies. In this regard, metallic nanolasers offer a unique platform. Their introduction has enabled confinement of light at a subwavelength scale and the ultra-small size of the modes afforded by these structures allows for cavity enhancing effects that can help facilitate thresholdless lasing and large direct modulation bandwidths. In this report, I present my work on the study of the fundamental properties of metallic nanolasers. I start with a rate equation model to predict threshold behavior and the modulation response of metallic nanolasers. Next, I explain the second-order coherence measurement setup that was built, based on a modified Hanbury-Brown and Twiss experiment, to assess the intensity autocorrelation of various optically pumped metallic nanolasers. These studies concluded that metallic coaxial and disk-shaped nanolasers are capable of generating truly coherent radiation. Subsequently, design considerations are taken into account for electrically pumped coaxial nanolasers. This has led to the demonstration of electrically injected coaxial and disk-shaped nanolasers at cryogenic temperatures. Lastly, the appearance of collective behaviors in metallic nanolasers lattices is explored. Individually supporting modes that are highly vectorial by nature, when such cavities are fabricated in close proximity to one another, coupling through their overlapping fields results in the formation of a set of supermodes. The tendency of the system to minimize the overall loss leads to each element of the lattice having a geometric dependent field distribution and helps promotes single-mode lasing. We show both through simulations and experimentally that this effect can lead to the direct generation of vector vortices
    • …
    corecore