4 research outputs found

    Losslees compression of RGB color images

    Get PDF
    Although much work has been done toward developing lossless algorithms for compressing image data, most techniques reported have been for two-tone or gray-scale images. It is generally accepted that a color image can be easily encoded by using a gray-scale compression technique on each of the three accounts the substantial correlations that are present between color planes. Although several lossy compression schemes that exploit such correlations have been reported in the literature, we are not aware of any such techniques for lossless compression. Because of the difference in goals, the best way of exploiting redundancies for lossy and lossless compression can be, and usually are, very different. We propose and investigate a few lossless compression schemes for RGB color images. Both prediction schemes and error modeling schemes are presented that exploit inter-frame correlations. Implementation results on a test set of images yield significant improvements

    Scanning and Sequential Decision Making for Multi-Dimensional Data - Part I: the Noiseless Case

    Get PDF
    We investigate the problem of scanning and prediction ("scandiction", for short) of multidimensional data arrays. This problem arises in several aspects of image and video processing, such as predictive coding, for example, where an image is compressed by coding the error sequence resulting from scandicting it. Thus, it is natural to ask what is the optimal method to scan and predict a given image, what is the resulting minimum prediction loss, and whether there exist specific scandiction schemes which are universal in some sense. Specifically, we investigate the following problems: First, modeling the data array as a random field, we wish to examine whether there exists a scandiction scheme which is independent of the field's distribution, yet asymptotically achieves the same performance as if this distribution was known. This question is answered in the affirmative for the set of all spatially stationary random fields and under mild conditions on the loss function. We then discuss the scenario where a non-optimal scanning order is used, yet accompanied by an optimal predictor, and derive bounds on the excess loss compared to optimal scanning and prediction. This paper is the first part of a two-part paper on sequential decision making for multi-dimensional data. It deals with clean, noiseless data arrays. The second part deals with noisy data arrays, namely, with the case where the decision maker observes only a noisy version of the data, yet it is judged with respect to the original, clean data.Comment: 46 pages, 2 figures. Revised version: title changed, section 1 revised, section 3.1 added, a few minor/technical corrections mad

    Adaptive edge-based prediction for lossless image compression

    Get PDF
    Many lossless image compression methods have been suggested with established results hard to surpass. However there are some aspects that can be considered to improve the performance further. This research focuses on two-phase prediction-encoding method, separately studying each and suggesting new techniques.;In the prediction module, proposed Edge-Based-Predictor (EBP) and Least-Squares-Edge-Based-Predictor (LS-EBP) emphasizes on image edges and make predictions accordingly. EBP is a gradient based nonlinear adaptive predictor. EBP switches between prediction-rules based on few threshold parameters automatically determined by a pre-analysis procedure, which makes a first pass. The LS-EBP also uses these parameters, but optimizes the prediction for each pre-analysis assigned edge location, thus applying least-square approach only at the edge points.;For encoding module: a novel Burrows Wheeler Transform (BWT) inspired method is suggested, which performs better than applying the BWT directly on the images. We also present a context-based adaptive error modeling and encoding scheme. When coupled with the above-mentioned prediction schemes, the result is the best-known compression performance in the genre of compression schemes with same time and space complexity
    corecore