3 research outputs found

    LOSSLESS AND LOSSY IMAGE COMPRESSION BASED ON DATA FOLDING

    Get PDF
    Image compression plays a very important role in image processing especially when we have to send the image on the internet. Since imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rates but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in the region of interest, i.e., in diagnostically important regions called region of interest. In the proposed work images are compressed using Data folding technique which uses the property of adjacent neighbour redundancy for prediction. In this method first column folding is applied followed by the row folding iteratively till the image size reduces to predefined value, then arithmetic encoding is applied which results the compressed image at the end before transmitting the data. In this paper lossless compression is achieved only at the region of interest and it is mainly suitable for medical images

    Image Compression and Watermarking scheme using Scalar Quantization

    Full text link
    This paper presents a new compression technique and image watermarking algorithm based on Contourlet Transform (CT). For image compression, an energy based quantization is used. Scalar quantization is explored for image watermarking. Double filter bank structure is used in CT. The Laplacian Pyramid (LP) is used to capture the point discontinuities, and then followed by a Directional Filter Bank (DFB) to link point discontinuities. The coefficients of down sampled low pass version of LP decomposed image are re-ordered in a pre-determined manner and prediction algorithm is used to reduce entropy (bits/pixel). In addition, the coefficients of CT are quantized based on the energy in the particular band. The superiority of proposed algorithm to JPEG is observed in terms of reduced blocking artifacts. The results are also compared with wavelet transform (WT). Superiority of CT to WT is observed when the image contains more contours. The watermark image is embedded in the low pass image of contourlet decomposition. The watermark can be extracted with minimum error. In terms of PSNR, the visual quality of the watermarked image is exceptional. The proposed algorithm is robust to many image attacks and suitable for copyright protection applications.Comment: 11 Pages, IJNGN Journal 201

    Adaptive edge-based prediction for lossless image compression

    Get PDF
    Many lossless image compression methods have been suggested with established results hard to surpass. However there are some aspects that can be considered to improve the performance further. This research focuses on two-phase prediction-encoding method, separately studying each and suggesting new techniques.;In the prediction module, proposed Edge-Based-Predictor (EBP) and Least-Squares-Edge-Based-Predictor (LS-EBP) emphasizes on image edges and make predictions accordingly. EBP is a gradient based nonlinear adaptive predictor. EBP switches between prediction-rules based on few threshold parameters automatically determined by a pre-analysis procedure, which makes a first pass. The LS-EBP also uses these parameters, but optimizes the prediction for each pre-analysis assigned edge location, thus applying least-square approach only at the edge points.;For encoding module: a novel Burrows Wheeler Transform (BWT) inspired method is suggested, which performs better than applying the BWT directly on the images. We also present a context-based adaptive error modeling and encoding scheme. When coupled with the above-mentioned prediction schemes, the result is the best-known compression performance in the genre of compression schemes with same time and space complexity
    corecore