9 research outputs found

    Compression of ECG Signal Using Neural Network Predictor and Huffman Coding

    Get PDF
    Medical signals and images need special treatment especially when the data become bigger and bigger. One of the treatment that will be considered in this experiment is about the data compression. ECG (Electro Cardio Graph) signals will create very big data when the signals were collected in a long period of time. Several methods can be used to compress the ECG data. In this experiment we used neural network to predict the incoming data and huffman coding to minimize the codes. The ECG data was collected from MIT-BIH arrhythmia database. The experiment gave low compression rasio when the predicted data was very close to the incoming data

    Quality-on-Demand Compression of EEG Signals for Telemedicine Applications Using Neural Network Predictors

    Get PDF
    A telemedicine system using communication and information technology to deliver medical signals such as ECG, EEG for long distance medical services has become reality. In either the urgent treatment or ordinary healthcare, it is necessary to compress these signals for the efficient use of bandwidth. This paper discusses a quality on demand compression of EEG signals using neural network predictors for telemedicine applications. The objective is to obtain a greater compression gains at a low bit rate while preserving the clinical information content. A two-stage compression scheme with a predictor and an entropy encoder is used. The residue signals obtained after prediction is first thresholded using various levels of thresholds and are further quantized and then encoded using an arithmetic encoder. Three neural network models, single-layer and multi-layer perceptrons and Elman network are used and the results are compared with linear predictors such as FIR filters and AR modeling. The fidelity of the reconstructed EEG signal is assessed quantitatively using parameters such as PRD, SNR, cross correlation and power spectral density. It is found from the results that the quality of the reconstructed signal is preserved at a low PRD thereby yielding better compression results compared to results obtained using lossless scheme

    Efficient ECG Compression and QRS Detection for E-Health Applications

    Get PDF
    Current medical screening and diagnostic procedures have shifted toward recording longer electrocardiogram (ECG) signals, which have traditionally been processed on personal computers (PCs) with high-speed multi-core processors and efficient memory processing. Battery-driven devices are now more commonly used for the same purpose and thus exploring highly efficient, low-power alternatives for local ECG signal collection and processing is essential for efficient and convenient clinical use. Several ECG compression methods have been reported in the current literature with limited discussion on the performance of the compressed and the reconstructed ECG signals in terms of the QRS complex detection accuracy. This paper proposes and evaluates different compression methods based not only on the compression ratio (CR) and percentage root-mean-square difference (PRD), but also based on the accuracy of QRS detection. In this paper, we have developed a lossy method (Methods III) and compared them to the most current lossless and lossy ECG compression methods (Method I and Method II, respectively). The proposed lossy compression method (Method III) achieves CR of 4.5×, PRD of 0.53, as well as an overall sensitivity of 99.78% and positive predictivity of 99.92% are achieved (when coupled with an existing QRS detection algorithm) on the MIT-BIH Arrhythmia database and an overall sensitivity of 99.90% and positive predictivity of 99.84% on the QT database.This work was made possible by NPRP grant #7-684-1-127 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu

    Lossless compression schemes for ECG signals using neural network predictors

    No full text
    This paper presents lossless compression schemes for ECG signals based on neural network predictors and entropy encoders. Decorrelation is achieved by nonlinear prediction in the first stage and encoding of the residues is done by using lossless entropy encoders in the second stage. Different types of lossless encoders, such as Huffman, arithmetic, and runlength encoders, are used. The performances of the proposed neural network predictor-based compression schemes are evaluated using standard distortion and compression efficiency measures. Selected records from MIT-BIH arrhythmia database are used for performance evaluation. The proposed compression schemes are compared with linear predictor-based compression schemes and it is shown that about 11% improvement in compression efficiency can be achieved for neural network predictor-based schemes with the same quality and similar setup. They are also compared with other known ECG compression methods and the experimental results show that superior performances in terms of the distortion parameters of the reconstructed signals can be achieved with the proposed schemes. Copyright (c) 2007 R. Kannan and C. Eswaran

    DATA COMPRESSION OVER SEISMIC SENSOR NETWORKS

    Get PDF

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Wearable Wireless Devices

    Get PDF
    No abstract available
    corecore