2 research outputs found

    Hybrid intelligent system for a synchronous rectifier converter control and soft switching ensurement

    Get PDF
    [Abastract]: This research implements an intelligent control strategy in a synchronous rectifier buck converter to assure that the converter operates in soft-switching mode. The converter is analysed and the two different switching modes are presented: Hard-switching and Soft-Switching. Afterwards, an intelligent model is implemented with the aim of identifying and classifying the switching mode of the power converter. The model implementation is based on classification methods through intelligent algorithms that differentiate between the two modes of operation. Satisfactory results have been obtained with the implemented classification method, achieving high accuracy and allowing the implementation of the model into the control strategy of the converter; assuring that the converter operates in the desired operating mode: Soft-Switching mode

    Single Stage Flyback Micro-Inverter for Solar Energy Systems

    Get PDF
    ABSTRACT Solar energy systems based on photovoltaic (PV) cells have attracted considerable interest in recent years due to their promise of clear and seemingly limitless generated energy. Solar energy systems based on micro-inverter architectures are gaining in popularity as they are less prone to shading and PV cell malfunction since each solar panel in a system has its own low power inverter. A number of micro-inverters are single stage flyback inverters that are based on the DC-DC flyback topologies. There have been numerous papers on the topic of how to improve the efficiency of dc-dc flyback converters but as far as improving the efficiency of dc-ac flyback micro-inverter is concerned, comparatively less investigation on efficiency improvement has been performed. A low cost technique for improving the efficiency of a basic dc-ac flyback micro-inverter is proposed in the paper. The proposed efficiency improving technique is based on a simple snubber, consisting of just a few passive elements. In the thesis, the flyback micro-inverter with the passive snubber is presented; the modes of operation of the converter are discussed as well as the design of the converter with the passive snubber. Experimental results obtained from a lab prototype are presented as well. A second novel technique for improving the efficiency of a single stage flyback micro-inverter is also proposed. The technique is based on combining the simple passive snubber with a variable frequency control zero-voltage switching (ZVS) technique. In the thesis, the operation of the micro-inverter with both the passive snubber and the ZVS technique is explained and the design of the converter is discussed. Experimental results obtained from a lab prototype are presented to confirm the effectiveness of the both the techniques
    corecore