422 research outputs found

    Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer

    Get PDF
    We present a study for the generation of events from a physical process with deep generative models. The simulation of physical processes requires not only the production of physical events, but also to ensure these events occur with the correct frequencies. We investigate the feasibility of learning the event generation and the frequency of occurrence with Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) to produce events like Monte Carlo generators. We study three processes: a simple two-body decay, the processes e+e−→Z→l+l−e^+e^-\to Z \to l^+l^- and pp→ttˉp p \to t\bar{t} including the decay of the top quarks and a simulation of the detector response. We find that the tested GAN architectures and the standard VAE are not able to learn the distributions precisely. By buffering density information of encoded Monte Carlo events given the encoder of a VAE we are able to construct a prior for the sampling of new events from the decoder that yields distributions that are in very good agreement with real Monte Carlo events and are generated several orders of magnitude faster. Applications of this work include generic density estimation and sampling, targeted event generation via a principal component analysis of encoded ground truth data, anomaly detection and more efficient importance sampling, e.g. for the phase space integration of matrix elements in quantum field theories.Comment: 24 pages, 10 figure

    Improving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect

    Full text link
    Despite being impactful on a variety of problems and applications, the generative adversarial nets (GANs) are remarkably difficult to train. This issue is formally analyzed by \cite{arjovsky2017towards}, who also propose an alternative direction to avoid the caveats in the minmax two-player training of GANs. The corresponding algorithm, called Wasserstein GAN (WGAN), hinges on the 1-Lipschitz continuity of the discriminator. In this paper, we propose a novel approach to enforcing the Lipschitz continuity in the training procedure of WGANs. Our approach seamlessly connects WGAN with one of the recent semi-supervised learning methods. As a result, it gives rise to not only better photo-realistic samples than the previous methods but also state-of-the-art semi-supervised learning results. In particular, our approach gives rise to the inception score of more than 5.0 with only 1,000 CIFAR-10 images and is the first that exceeds the accuracy of 90% on the CIFAR-10 dataset using only 4,000 labeled images, to the best of our knowledge.Comment: Accepted as a conference paper in International Conference on Learning Representation(ICLR). Xiang Wei and Boqing Gong contributed equally in this wor

    Adaptive Density Estimation for Generative Models

    Get PDF
    Unsupervised learning of generative models has seen tremendous progress over recent years, in particular due to generative adversarial networks (GANs), variational autoencoders, and flow-based models. GANs have dramatically improved sample quality, but suffer from two drawbacks: (i) they mode-drop, i.e., do not cover the full support of the train data, and (ii) they do not allow for likelihood evaluations on held-out data. In contrast, likelihood-based training encourages models to cover the full support of the train data, but yields poorer samples. These mutual shortcomings can in principle be addressed by training generative latent variable models in a hybrid adversarial-likelihood manner. However, we show that commonly made parametric assumptions create a conflict between them, making successful hybrid models non trivial. As a solution, we propose to use deep invertible transformations in the latent variable decoder. This approach allows for likelihood computations in image space, is more efficient than fully invertible models, and can take full advantage of adversarial training. We show that our model significantly improves over existing hybrid models: offering GAN-like samples, IS and FID scores that are competitive with fully adversarial models, and improved likelihood scores
    • …
    corecore