248 research outputs found

    A Review of Optical Routers in Photonic Networks-on-Chip: A Literature Survey

    Get PDF
    Due to the increasing growth of processing cores in complex computational systems, all the connection converted bottleneck for all systems. With the protection of progressing and constructing complex photonic connection on chip, optical data transmission is the best choice for replacing with electrical interconnection for the reason of gathering connection with a high bandwidth and insertion loss on chip was mentioned. Optical routers play an important role in the Optical Network-on-Chip (ONoC), which are responsible for selecting the path between optical signal source and the destination. In recent years, silicon optical routers based on Micro-Ring Resonators (MRRs) and Mach-Zehnder Interferometers (MZIs) have been proposed. The design of optical switches is desirable by using of Mach-Zehnder Interferometer. This is while that Micro Ring Resonator Switches have low bandwidth, whereas Mach-Zehnder Interferometer switches have wide bandwidth inherently. Mach-Zehnder Interferometer switches are able to routing with high speed for data transmission with Nano second switching time. This is while, that MRR switches in compare to MZIs has the less power consumption and area consumption. On the other hand we can divide optical routers into parts, A. general router and B. specific- router, so that in specific routers, some of I/O paths for the reason of avoiding deadlock had be omitted. In continue, several kinds of optical router based on MZI and MRR along with researching a series of parameters was mentioned

    Optical architectures for high performance switching and routing

    Get PDF
    This thesis investigates optical interconnection networks for high performance switching and routing. Two main topics are studied. The first topic regards the use of silicon microring resonators for short reach optical interconnects. Photonic technologies can help to overcome the intrinsic limitations of electronics when used in interconnects, short-distance transmissions and switching operations. This thesis considers the peculiarasymmetric losses of microring resonators since they pose unprecedented challenges for the design of the architecture and for the routing algorithms. It presents new interconnection architectures, proposes modifications on classical routing algorithms and achieves a better performance in terms of fabric complexity and scalability with respect to the state of the art. Subsequently, this thesis considers wavelength dimension capabilities of microring resonators in which wavelength reuse (i.e. crosstalk accumulation) presents impairments on the system performance. To this aim, it presents different crosstalk reduction techniques, a feasibility analysis for the design of microring resonators and a novel wavelength-agile routing matrix. The second topic regards flexible resource allocation with adaptable infrastructure for elastic optical networks. In particular, it focus on Architecture on Demand (AoD), whereby optical node architectures can be reconfigured on the fly according to traffic requirements. This thesis includes results on the first flexible-grid optical spectrum networking field trial, carried out in a collaboration with University of Essex. Finally, it addresses several challenges that present the novel concept AoD by means of modeling and simulation. This thesis proposes an algorithm to perform automatic architecture synthesis, reports AoD scalability and power consumption results working under the proposed synthesis algorithm. Such results validate AoD as a flexible node concept that provides power efficiency and high switching capacity

    Architecting a One-to-many Traffic-Aware and Secure Millimeter-Wave Wireless Network-in-Package Interconnect for Multichip Systems

    Get PDF
    With the aggressive scaling of device geometries, the yield of complex Multi Core Single Chip(MCSC) systems with many cores will decrease due to the higher probability of manufacturing defects especially, in dies with a large area. Disintegration of large System-on-Chips(SoCs) into smaller chips called chiplets has shown to improve the yield and cost of complex systems. Therefore, platform-based computing modules such as embedded systems and micro-servers have already adopted Multi Core Multi Chip (MCMC) architectures overMCSC architectures. Due to the scaling of memory intensive parallel applications in such systems, data is more likely to be shared among various cores residing in different chips resulting in a significant increase in chip-to-chip traffic, especially one-to-many traffic. This one-to-many traffic is originated mainly to maintain cache-coherence between many cores residing in multiple chips. Besides, one-to-many traffics are also exploited by many parallel programming models, system-level synchronization mechanisms, and control signals. How-ever, state-of-the-art Network-on-Chip (NoC)-based wired interconnection architectures do not provide enough support as they handle such one-to-many traffic as multiple unicast trafficusing a multi-hop MCMC communication fabric. As a result, even a small portion of such one-to-many traffic can significantly reduce system performance as traditional NoC-basedinterconnect cannot mask the high latency and energy consumption caused by chip-to-chipwired I/Os. Moreover, with the increase in memory intensive applications and scaling of MCMC systems, traditional NoC-based wired interconnects fail to provide a scalable inter-connection solution required to support the increased cache-coherence and synchronization generated one-to-many traffic in future MCMC-based High-Performance Computing (HPC) nodes. Therefore, these computation and memory intensive MCMC systems need an energy-efficient, low latency, and scalable one-to-many (broadcast/multicast) traffic-aware interconnection infrastructure to ensure high-performance. Research in recent years has shown that Wireless Network-in-Package (WiNiP) architectures with CMOS compatible Millimeter-Wave (mm-wave) transceivers can provide a scalable, low latency, and energy-efficient interconnect solution for on and off-chip communication. In this dissertation, a one-to-many traffic-aware WiNiP interconnection architecture with a starvation-free hybrid Medium Access Control (MAC), an asymmetric topology, and a novel flow control has been proposed. The different components of the proposed architecture are individually one-to-many traffic-aware and as a system, they collaborate with each other to provide required support for one-to-many traffic communication in a MCMC environment. It has been shown that such interconnection architecture can reduce energy consumption and average packet latency by 46.96% and 47.08% respectively for MCMC systems. Despite providing performance enhancements, wireless channel, being an unguided medium, is vulnerable to various security attacks such as jamming induced Denial-of-Service (DoS), eavesdropping, and spoofing. Further, to minimize the time-to-market and design costs, modern SoCs often use Third Party IPs (3PIPs) from untrusted organizations. An adversary either at the foundry or at the 3PIP design house can introduce a malicious circuitry, to jeopardize an SoC. Such malicious circuitry is known as a Hardware Trojan (HT). An HTplanted in the WiNiP from a vulnerable design or manufacturing process can compromise a Wireless Interface (WI) to enable illegitimate transmission through the infected WI resulting in a potential DoS attack for other WIs in the MCMC system. Moreover, HTs can be used for various other malicious purposes, including battery exhaustion, functionality subversion, and information leakage. This information when leaked to a malicious external attackercan reveals important information regarding the application suites running on the system, thereby compromising the user profile. To address persistent jamming-based DoS attack in WiNiP, in this dissertation, a secure WiNiP interconnection architecture for MCMC systems has been proposed that re-uses the one-to-many traffic-aware MAC and existing Design for Testability (DFT) hardware along with Machine Learning (ML) approach. Furthermore, a novel Simulated Annealing (SA)-based routing obfuscation mechanism was also proposed toprotect against an HT-assisted novel traffic analysis attack. Simulation results show that,the ML classifiers can achieve an accuracy of 99.87% for DoS attack detection while SA-basedrouting obfuscation could reduce application detection accuracy to only 15% for HT-assistedtraffic analysis attack and hence, secure the WiNiP fabric from age-old and emerging attacks

    Heterogeneous Photonic Network-on-Chip with Dynamic Bandwidth Allocation

    Get PDF
    Advancements in the field of chip fabrication has facilitated in integrating more number of transistors in a given area which has lead to an era of multi-core processors. Future multi-core chips or chip multiprocessors (CMPs) will have hundreds of heterogeneous components including processing engines, custom logic, GPU units, programmable fabrics and distributed memory. Such multi-core chips are expected to run varied multiple parallel workloads simultaneously. Hence, different communicating cores will require different bandwidths leading to the necessity of a heterogeneous Network-on-Chip (NoC) architecture. Simply over-provisioning for performance will invariably result in loss of power efficiency. On the other hand, recent research has shown that photonic interconnects are capable of achieving high-bandwidth and energy-efficient on-chip data transfer. In this paper we propose a dynamic heterogeneous photonic NoC (d-HetPNOC) architecture with dynamic bandwidth allocation to achieve better performance and energy-efficiency compared to a homogeneous photonic NoC architecture with the same aggregate data bandwidth

    Towards Compelling Cases for the Viability of Silicon-Nanophotonic Technology in Future Many-core Systems

    Get PDF
    Many crossbenchmarking results reported in the open literature raise optimistic expectations on the use of optical networks-on-chip (ONoCs) for high-performance and low-power on-chip communications in future Manycore Systems. However, these works ultimately fail to make a compelling case for the viability of silicon-nanophotonic technology for two fundamental reasons: (1)Lack of aggressive electrical baselines (ENoCs). (2) Inaccuracy in physical- and architecture-layer analysis of the ONoC. This thesis aims at providing the guidelines and minimum requirements so that nanophotonic emerging technology may become of practical relevance. The key enabler for this study is a cross-layer design methodology of the optical transport medium, ranging from the consideration of the predictability gap between ONoC logic schemes and their physical implementations, up to architecture-level design issues such as the network interface and its co-design requirements with the memory hierarchy. In order to increase the practical relevance of the study, we consider a consolidated electrical NoC counterpart with an optimized architecture from a performance and power viewpoint. The quality metrics of this latter are derived from synthesis and place&route on an industrial 40nm low-power technology library. Building on this methodology, we are able to provide a realistic energy efficiency comparison between ONoC and ENoC both at the level of the system interconnect and of the system as a whole, pointing out the sensitivity of the results to the maturity of the underlying silicon nanophotonic technology, and at the same time paving the way towards compelling cases for the viability of such technology in next generation many-cores systems

    Enabling Technologies for Optical Data Center Networks: Spatial Division Multiplexing

    Get PDF
    With the continuously growing popularity of cloud services, the traffic volume inside the\ua0data\ua0centers is dramatically increasing. As a result, a scalable and efficient infrastructure\ua0for\ua0data\ua0center\ua0networks\ua0(DCNs) is required. The current\ua0optical\ua0DCNs using either individual fibers or fiber ribbons are costly, bulky, hard to manage, and not scalable.\ua0Spatial\ua0division\ua0multiplexing\ua0(SDM) based on multicore or multimode (few-mode) fibers is recognized as a promising technology to increase the\ua0spatial\ua0efficiency\ua0for\ua0optical\ua0DCNs, which opens a new way towards high capacity and scalability. This tutorial provides an overview of the components, transmission options, and interconnect architectures\ua0for\ua0SDM-based DCNs, as well as potential technical challenges and future directions. It also covers the co-existence of SDM and other\ua0multiplexing\ua0techniques, such as wavelength-division\ua0multiplexing\ua0and flexible spectrum\ua0multiplexing, in\ua0optical\ua0DCNs
    corecore