3 research outputs found

    LizarMong: Excellent Key Encapsulation Mechanism based on RLWE and RLWR

    Get PDF
    The RLWE family algorithms submitted to the NIST post-quantum cryptography standardization process have each merit in terms of security, correctness, performance, and bandwidth. However, there is no splendid algorithm in all respects. Besides, various recent studies have been published that affect security and correctness, such as side-channel attacks and error dependencies. To date, though, no algorithm has fully considered all the aspects. We propose a novel Key Encapsulation Mechanism scheme called LizarMong, which is based on RLizard. LizarMong combines the merit of each algorithm and state-of-the-art studies. As a result, it achieves up to 85% smaller bandwidth and 3.3 times faster performance compared to RLizard. Compared to the NIST\u27s candidate algorithms with a similar security, the bandwidth is about 5-42% smaller, and the performance is about 1.2-4.1 times faster. Also, our scheme resists the known side-channel attacks

    NewHope: A Mobile Implementation of a Post-Quantum Cryptographic Key Encapsulation Mechanism

    Get PDF
    NIST anticipates the appearance of large-scale quantum computers by 2036 [34], which will threaten widely used asymmetric algorithms, National Institute of Standards and Technology (NIST) launched a Post-Quantum Cryptography Standardization Project to find quantum-secure alternatives. NewHope post-quantum cryptography (PQC) key encapsulation mechanism (KEM) is the only Round 2 candidate to simultaneously achieve small key values through the use of a security problem with sufficient confidence its security, while mitigating any known vulnerabilities. This research contributes to NIST projectā€™s overall goal by assessing the platform flexibility and resource requirements of NewHope KEMs on an Android mobile device. The resource requirements analyzed are transmission size as well as scheme runtime, central processing unit (CPU), memory, and energy usage. Results from each NewHope KEM instantiations are compared amongst each other, to a baseline application, and to results from previous work. NewHope PQC KEM was demonstrated to have sufficient flexibility for mobile implementation, competitive performance with other PQC KEMs, and to have competitive scheme runtime with current key exchange algorithms
    corecore