17,402 research outputs found

    Universally Near Optimal Online Power Control for Energy Harvesting Nodes

    Full text link
    We consider online power control for an energy harvesting system with random i.i.d. energy arrivals and a finite size battery. We propose a simple online power control policy for this channel that requires minimal information regarding the distribution of the energy arrivals and prove that it is universally near-optimal for all parameter values. In particular, the policy depends on the distribution of the energy arrival process only through its mean and it achieves the optimal long-term average throughput of the channel within both constant additive and multiplicative gaps. Existing heuristics for online power control fail to achieve such universal performance. This result also allows us to approximate the long-term average throughput of the system with a simple formula, which sheds some light on the qualitative behavior of the throughput, namely how it depends on the distribution of the energy arrivals and the size of the battery.Comment: the proposed scheme is shown to be optimal both within constant additive and multiplicative gaps; submitted to Journal on Selected Areas in Communications - Series on Green Communications and Networking (Issue 3); revised following reviewers' comment

    Cognition-inspired 5G cellular networks: a review and the road ahead

    Get PDF
    Despite the evolution of cellular networks, spectrum scarcity and the lack of intelligent and autonomous capabilities remain a cause for concern. These problems have resulted in low network capacity, high signaling overhead, inefficient data forwarding, and low scalability, which are expected to persist as the stumbling blocks to deploy, support and scale next-generation applications, including smart city and virtual reality. Fifth-generation (5G) cellular networking, along with its salient operational characteristics - including the cognitive and cooperative capabilities, network virtualization, and traffic offload - can address these limitations to cater to future scenarios characterized by highly heterogeneous, ultra-dense, and highly variable environments. Cognitive radio (CR) and cognition cycle (CC) are key enabling technologies for 5G. CR enables nodes to explore and use underutilized licensed channels; while CC has been embedded in CR nodes to learn new knowledge and adapt to network dynamics. CR and CC have brought advantages to a cognition-inspired 5G cellular network, including addressing the spectrum scarcity problem, promoting interoperation among heterogeneous entities, and providing intelligence and autonomous capabilities to support 5G core operations, such as smart beamforming. In this paper, we present the attributes of 5G and existing state of the art focusing on how CR and CC have been adopted in 5G to provide spectral efficiency, energy efficiency, improved quality of service and experience, and cost efficiency. This main contribution of this paper is to complement recent work by focusing on the networking aspect of CR and CC applied to 5G due to the urgent need to investigate, as well as to further enhance, CR and CC as core mechanisms to support 5G. This paper is aspired to establish a foundation and to spark new research interest in this topic. Open research opportunities and platform implementation are also presented to stimulate new research initiatives in this exciting area

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    On Internal Knowledge Markets

    Get PDF
    In large organizations, knowledge can move rapidly or slowly, usefully or unproductively. Those who place faith in internal knowledge markets and online platforms to promote knowledge stocks and flows should understand how extrinsic incentives can crowd outintrinsic motivation
    • …
    corecore