2,037,662 research outputs found

    Longitudinal Data Analysis

    Get PDF

    Longitudinal Functional Data Analysis

    Full text link
    We consider analysis of dependent functional data that are correlated because of a longitudinal-based design: each subject is observed at repeated time visits and for each visit we record a functional variable. We propose a novel parsimonious modeling framework for the repeatedly observed functional variables that allows to extract low dimensional features. The proposed methodology accounts for the longitudinal design, is designed for the study of the dynamic behavior of the underlying process, and is computationally fast. Theoretical properties of this framework are studied and numerical investigation confirms excellent behavior in finite samples. The proposed method is motivated by and applied to a diffusion tensor imaging study of multiple sclerosis. Using Shiny (Chang et al., 2015) we implement interactive plots to help visualize longitudinal functional data as well as the various components and prediction obtained using the proposed method.Comment: 32 pages, 4 figure

    Inverse regression for longitudinal data

    Full text link
    Sliced inverse regression (Duan and Li [Ann. Statist. 19 (1991) 505-530], Li [J. Amer. Statist. Assoc. 86 (1991) 316-342]) is an appealing dimension reduction method for regression models with multivariate covariates. It has been extended by Ferr\'{e} and Yao [Statistics 37 (2003) 475-488, Statist. Sinica 15 (2005) 665-683] and Hsing and Ren [Ann. Statist. 37 (2009) 726-755] to functional covariates where the whole trajectories of random functional covariates are completely observed. The focus of this paper is to develop sliced inverse regression for intermittently and sparsely measured longitudinal covariates. We develop asymptotic theory for the new procedure and show, under some regularity conditions, that the estimated directions attain the optimal rate of convergence. Simulation studies and data analysis are also provided to demonstrate the performance of our method.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1193 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org). With Correction

    Multilinear tensor regression for longitudinal relational data

    Full text link
    A fundamental aspect of relational data, such as from a social network, is the possibility of dependence among the relations. In particular, the relations between members of one pair of nodes may have an effect on the relations between members of another pair. This article develops a type of regression model to estimate such effects in the context of longitudinal and multivariate relational data, or other data that can be represented in the form of a tensor. The model is based on a general multilinear tensor regression model, a special case of which is a tensor autoregression model in which the tensor of relations at one time point are parsimoniously regressed on relations from previous time points. This is done via a separable, or Kronecker-structured, regression parameter along with a separable covariance model. In the context of an analysis of longitudinal multivariate relational data, it is shown how the multilinear tensor regression model can represent patterns that often appear in relational and network data, such as reciprocity and transitivity.Comment: Published at http://dx.doi.org/10.1214/15-AOAS839 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Functional single index models for longitudinal data

    Full text link
    A new single-index model that reflects the time-dynamic effects of the single index is proposed for longitudinal and functional response data, possibly measured with errors, for both longitudinal and time-invariant covariates. With appropriate initial estimates of the parametric index, the proposed estimator is shown to be n\sqrt{n}-consistent and asymptotically normally distributed. We also address the nonparametric estimation of regression functions and provide estimates with optimal convergence rates. One advantage of the new approach is that the same bandwidth is used to estimate both the nonparametric mean function and the parameter in the index. The finite-sample performance for the proposed procedure is studied numerically.Comment: Published in at http://dx.doi.org/10.1214/10-AOS845 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore