2,037,662 research outputs found
Longitudinal Functional Data Analysis
We consider analysis of dependent functional data that are correlated because
of a longitudinal-based design: each subject is observed at repeated time
visits and for each visit we record a functional variable. We propose a novel
parsimonious modeling framework for the repeatedly observed functional
variables that allows to extract low dimensional features. The proposed
methodology accounts for the longitudinal design, is designed for the study of
the dynamic behavior of the underlying process, and is computationally fast.
Theoretical properties of this framework are studied and numerical
investigation confirms excellent behavior in finite samples. The proposed
method is motivated by and applied to a diffusion tensor imaging study of
multiple sclerosis. Using Shiny (Chang et al., 2015) we implement interactive
plots to help visualize longitudinal functional data as well as the various
components and prediction obtained using the proposed method.Comment: 32 pages, 4 figure
Inverse regression for longitudinal data
Sliced inverse regression (Duan and Li [Ann. Statist. 19 (1991) 505-530], Li
[J. Amer. Statist. Assoc. 86 (1991) 316-342]) is an appealing dimension
reduction method for regression models with multivariate covariates. It has
been extended by Ferr\'{e} and Yao [Statistics 37 (2003) 475-488, Statist.
Sinica 15 (2005) 665-683] and Hsing and Ren [Ann. Statist. 37 (2009) 726-755]
to functional covariates where the whole trajectories of random functional
covariates are completely observed. The focus of this paper is to develop
sliced inverse regression for intermittently and sparsely measured longitudinal
covariates. We develop asymptotic theory for the new procedure and show, under
some regularity conditions, that the estimated directions attain the optimal
rate of convergence. Simulation studies and data analysis are also provided to
demonstrate the performance of our method.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1193 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org). With Correction
Multilinear tensor regression for longitudinal relational data
A fundamental aspect of relational data, such as from a social network, is
the possibility of dependence among the relations. In particular, the relations
between members of one pair of nodes may have an effect on the relations
between members of another pair. This article develops a type of regression
model to estimate such effects in the context of longitudinal and multivariate
relational data, or other data that can be represented in the form of a tensor.
The model is based on a general multilinear tensor regression model, a special
case of which is a tensor autoregression model in which the tensor of relations
at one time point are parsimoniously regressed on relations from previous time
points. This is done via a separable, or Kronecker-structured, regression
parameter along with a separable covariance model. In the context of an
analysis of longitudinal multivariate relational data, it is shown how the
multilinear tensor regression model can represent patterns that often appear in
relational and network data, such as reciprocity and transitivity.Comment: Published at http://dx.doi.org/10.1214/15-AOAS839 in the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Functional single index models for longitudinal data
A new single-index model that reflects the time-dynamic effects of the single
index is proposed for longitudinal and functional response data, possibly
measured with errors, for both longitudinal and time-invariant covariates. With
appropriate initial estimates of the parametric index, the proposed estimator
is shown to be -consistent and asymptotically normally distributed.
We also address the nonparametric estimation of regression functions and
provide estimates with optimal convergence rates. One advantage of the new
approach is that the same bandwidth is used to estimate both the nonparametric
mean function and the parameter in the index. The finite-sample performance for
the proposed procedure is studied numerically.Comment: Published in at http://dx.doi.org/10.1214/10-AOS845 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
- …
