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1. Why Panel Data?

Panel data, or longitudinal data, refers to data set that contains observations of a

number of individuals over time. In other words, it provides multiple observations for each

individual in the sample. Compared to the cross-sectional data in which observations for a

number of individuals are available only for a given time, or the time series data, in which

a single entity is observed over time, panel data has the obvious advantages of having

more degrees of freedom and less collinearity among explanatory variables, hence provides

the possibility of obtaining more accurate parameter estimates. More importantly, panel

data by blending inter-individual differences with intra-individual dynamics, allows the

investigation of more complicated behavioral hypotheses than those that can be addressed

using cross-sectional or time series data. For instance, standard assumption for the analysis

of cross-sectional data is that conditional on certain variables, each woman is a random

sample from a homogeneous population. Therefore, if a cross-sectional sample yields an

average labor-participation rate of 50 percent for married women, it would imply that

each woman has a 50 percent chance of being in the labor force at any given time, hence

a married woman would be expected to spend half of her married life in the labor force

and half out of the labor force. The job turnover would be frequent, and the average

job duration would be expected just two years (Ben-Porath (1973)). However, the cross-

sectional data could be drawn from a heterogeneous population in which 50 percent of the

sample coming from the population that always work and 50 percent from the population

that never work. In this situation, there is no turnover and current work status about a

woman is a perfect predictor of her future work status. To discriminate between these two

possibilities, we need information on individual labor-force histories in different subintervals

of the life cycle, which can only be provided if information on intertemporal dynamics of

individual entities are available. On the other hand, although time series data provide

information on dynamic adjustment, variables over time tend to move collinearly, hence

makes it difficult to identify microdynamic or macrodynamic effects. Often estimation of
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distributed lag models has to rely on strong prior restrictions like Koyck or Almon lag

with very little empirical justification. With panel data, the interindividual differences

often can reduce or lessen the problem of multicollinearity and provide the possibility of

estimating unrestricted time adjustment patterns (e.g. Pakes and Griliches (1984)).

By utilizing information on both the intertemporal dynamics and the individuality

of the entities, panel data may also allow an investigator to control the effects of missing

or unobserved variables. For instance, MaCurdy’s (1981) life cycle labor supply of prime-

age males under certainty model assumes that the logarithm of hours worked is a linear

function of the real wage rate and the logarithm of the worker’s marginal utility of initial

wealth, which is unobserved. Since wage rate and marginal utility of initial wealth are

correlated, any instrument that is correlated with the wage rate will be correlated with the

marginal utility of initial wealth. There is no way one can obtain consistent estimate of the

coefficient of the wage rate with cross-sectional data. But if panel data are available, one

can transform the labor supply model by taking first difference to get rid of the marginal

utility of initial wealth as an explanatory variable. The resulting regression can yeild

consistent estimates of the coefficient of wage rate and other explanatory varibles.

Panel data may also provide micro foundations for aggregate data analysis. Aggregate

data analysis often invokes the “representative agent” assumption. If micro units are

heterogeneous, the time series properties of aggregate data may be very different from

those of disaggregate data (e.g. Granger (1990), Lewbel (1992, 94), Pesaran (1999)) and

policy evaluation based on aggregate data could also be grossly misleading (e.g. Hsiao,

Shen and Fujiki (2004)). Panel data by providing time series observations for a number of

individuals is ideal for the investigation of homogeneity issue.

Panel data involve observations of two or more dimensions. In normal circumstance,

one would expect that the computation and inference of panel data models be more compli-

cated than cross-section or time series data. However, in certain situations, the availability

of panel data actually simplify inference. For instance, statistical inference for nonstation-
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ary panel data can be complicated (e.g. Phillips (1986)). But, if observations are inde-

pendently distributed across cross-sectional units, central limit theorems applied across

cross-sectional units lead to asymptotically normally distributed statistics (e.g. Levin, Lin

and Chu (2002), Pesaran, Shin and Smith (2002)).

2. Issues of Panel Data Analysis

Standard statistical methodology is based on the assumption that the outcomes, say y,

conditional on certain variables, say x
˜
, are random outcomes from a probability distribution

that is characterized by a fixed dimensional parameter vector, θ
˜
, f(y | x

˜
; θ
˜
). For instance,

the standard linear regression model assumes that f(y | x
˜
; θ
˜
) takes the form that

E(y | x
˜
) = α + β

˜
′x
˜
. (2.1)

and

Var(y | x
˜
) = σ2, (2.2)

where θ
˜
′ = (α, β

˜
′, σ2). Panel data, by its nature, focus on individual outcomes. Factors

affecting individual outcomes are numerous. It is rare to be able to assume a common

conditional probability density function of y conditional on x
˜

for all cross-sectional units,

i, at all time, t. If the conditional density of y given x
˜

varies across i and over t, the

fundamental theorems for statistical inference, the laws of large numbers and central limit

theorems, will be difficult to implement. Blindly imposing a homogeneity assumption of

f(y | x
˜
; θ
˜
) across i and over t can lead to severely biased inference. For instance, suppose

that the data is generated by

yit = αi + β
˜
′x
˜it + vit,

i = 1, . . . , N,
t = 1, . . . , T,

(2.3)

as depicted by Figure 1 in which the broken-time ellipses represent the point scatter of

individual observation around the mean, represented by the broken straight line. If an

investigator mistakenly estimate a model of the form

yit = α + β
˜
′x
˜

+ v∗
it. (2.4)
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The solid line in Figure 1 would depict the pooled least squares regression result which

could be completely contradict the individual relation between y and x
˜
.

One way to restore homogeneity across i and/or over t is to add more conditional

variables, say z
˜
,

f(yit | x
˜it, z˜it; θ˜

). (2.3)

However, the dimension of z
˜

can be large. A model is a simplification of reality, not a

mimic of reality. The inclusion of z
˜

may confuse the fundamental relationship between y

and x
˜
, in particular, when there is a shortage of degrees of freedom or multicollinearity, etc.

Moreover, z
˜

may not be observable. If an investigator is only interested in the relationship

between y and x
˜
, a common approach to characterize the heterogeneity not captured by x

˜
is to assume that the parameter vector varies across i and over t, θ

˜it, so that the conditional

density of y given x
˜

takes the form f(yit | x
˜it; θ˜it). However, without a structure being

imposed on θ
˜it, such a model only has descriptive value, it is not possible to draw any

inference.

One way to impose some structure on θ
˜it is to decompose θ

˜it into (β
˜
, γ
˜it

), where β
˜

is the same across i and over t, referred to as structural parameters, and γ
˜it

as incidental

parameters because when cross-units, N and/or time series observations, T increases, so

is the dimension of γ
˜it

. The focus of panel data literature is to make inference on β
˜

after

controlling the impact of γ
˜it

.

Without imposing structure for γ
˜it

, again it is not possible to make any inference on

β
˜

because the unknown γ
˜it

will exhaust all available sample information. Assuming that

the impacts of observable variables, x
˜
, are the same across i and over t, represented by the

structure parameters, β
˜
, the incidental parameters γ

˜it
represent the heterogeneity across i

and over t that are not captured by x
˜it. They can be considered as composed of the effects

of omitted individual time-invariant, αi, period individual-invariant, λt, and individual

time-varying variables, uit. The individuals time-invariant variables are variables that are

the same for a given cross-sectional unit through time but that vary across cross-sectional
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units such as individual-firm management, ability, gender, and socio-economic background

variables. The period individual-invariant variables are variables that are the same for all

cross-sectional units at a given time but that vary though time such as prices, interest

rates, and wide spread optimism or pessimism. The individual time-varying variables are

variables that vary across cross-sectional units at a given point in time and also exhibit

variations through time such as firm profits, sales and capital stock. In a single equation

frmaework, it is a common practice to assume that the effects of omitted individual time-

varying variables, uit as random and uncorrelated with x
˜
. The individual-specific effects,

αi and time specific effects, λt can either be assumed as random variables-referred to as

the random effects model, or fixed parameters-referred to as the fixed effects model.

3. Linear Static Models

A widely used panel data model is to assume that the effects of observed explanatory

variables, x
˜
, are identical across cross-sectional units, i, and over time, t, while the effects

of omitted variables can be decomposed into the individual-specific effects, αi, time-specific

effects, λt, and individual time-varying effects, uit, as follows:

yit = β
˜
′x
˜it + αi + λt + uit,

i = 1, . . . , N,
t = 1, . . . , T.

(3.1)

In a single equation framework. individual time effects, u, are assumed to be uncorrelated

with x
˜
, while αi and λt may or may not correlated with x

˜
. When αi and λt are treated as

fixed constants, they are parameters to be estimated so whether they are correlated with

x
˜

is not an issue. On the other hand, when αi and λt are treated as random, they are

typically assumed to be uncorrelated with x
˜it.

For ease of exposition, we shall assume that there are no time specific effects, i.e.,

λt = 0 for all t and uit are independently, identically distributed (i.i.d) across i and over

t. Stack an individuals T time series observations of (yit, x
˜
′
it) into a vector and a matrix,

(3.1) may alternatively be written as

y
˜i

= Xiβ
˜

+ e
˜
αi + u

˜i, i = 1, . . . , N, (3.2)
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where y
˜i

= (yi1, . . . , yiT )′, Xi = (x
˜i1, . . . , x˜iT )′, u

˜i = (ui1, . . . , uiT )′, and e
˜

is a T × 1 vector

of 1’s.

Let Q be a T × T matrix satisfying the condition that Qe
˜

= 0
˜
. Premultiplying (3.2)

by Q yields

Qy
˜i

= QXiβ
˜

+ Qu
˜i, i = 1. . . . , N. (3.3)

Equation (3.3) no longer involves αi. The issue of whether αi is correlated with x
˜it or

whether αi should be treated as fixed or random is no longer relevant for (3.3). Moreover,

since Xi is exogenous, E(QXiu
˜
′
iQ

′) = QE(Xiu
˜
′
i)Q

′ = 0
˜

and EQu
˜iu˜

′
iQ

′ = σ2
uQQ′. An

efficient estimator of β
˜

is the generalized least squares estimator (GLS),

β̂
˜

=

[
N∑

i=1

X ′
i(Q

′Q)−Xi

]−1 [
N∑

i=1

X ′
i(Q

′Q)−y
˜i

]
, (3.4)

where (Q′Q)− denotes the Moore-Penrose generalized inverse (e.g. Rao (1973)).

When Q = IT − 1
T e

˜
e
˜
′, Q is idempotent. The Moore-Penrose generalized inverse of

(Q′Q)− is just Q = IT − 1
T

e
˜
e
˜
′ itself. Premultiplying (3.3) by Q is equivalent to transforming

(3.1) into a model

(yit − ȳi) = β
˜
′(x

˜it − x̄
˜i) + (uit − ūi),

i = 1, . . . , N,
t = 1, . . . , T,

(3.5)

where ȳi = 1
T

T∑
t=1

yit, x̄
˜i = 1

T

T∑
t=1

x
˜it and ūi = 1

T

T∑
t=1

uit. The transformation is called

covariance transformation. The least squares estimator (LS) (or a generalized least squares

estimator (GLS)) of (3.5),

β̂
˜cv

=

[
N∑

i=1

T∑
t=1

(x
˜it − x̄

˜i)(x˜it − x̄
˜i)

′
]−1 [

N∑
t=1

T∑
t=1

(x
˜it − x̄

˜i)(yit − ȳi)

]
, (3.6)

is called covariance estimator or within estimator because the estimation of β
˜

only makes

use of within (group) variation of yit and x
˜it only. The covariance estimator of β

˜
turns out

to be also the least squares estimator of (3.1) when λt = 0. It is the best linear unbiased

estimator of β
˜

if αi is treated as fixed and uit is i.i.d.
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If αi is random, transforming (3.2) into (3.3) transforms T independent equations (or

observations) into (T − 1) independent equations, hence the covariance estimator is not

as efficient as the efficient generalized least squares estimator if Eαix
˜it = 0

˜
. When αi is

independent of x
˜it and is independently, identically distributed across i with mean 0

˜
and

variance σ2
α, the best linear unbiased estimator (BLUE) of β

˜
is GLS,

β̂
˜

=

[
N∑

i=1

X ′
iV

−1Xi

]−1 [
N∑

i=1

X ′
iV

−1y
˜i

]
. (3.7)

where V = σ2
uIT + σ2

αe
˜
e
˜
′, V −1 = 1

σ2
u

[
IT − σ2

α

σ2
u+Tσ2

α
e
˜
e
˜
′
]
. The GLS is equivalent to first

transforming the data by subtracting a fraction (1 − ψ1/2) of individual means ȳi and x̄
˜i

from their corresponding yit and x
˜it, then regressing [yit−(1−ψ1/2)ȳi] on [x

˜it−(1−ψ1/2)x̄
˜i],

where ψ = σ2
u

σ2
u+Tσ2

α
. (for detail, see Baltagi (2001), Hsiao (2003)).

When αi is treated as fixed, the covariance estimator is equivalent to applying LS to

the transformed model (3.5). If a variable is time-invariant, like gender dummy, xkit =

xkis = x̄ki, the transformation eliminates the corresponding variable from the specification.

Hence, the coefficients of time-invariant variables cannot be estimated. On the other hand,

if αi is random and uncorrelated with x
˜i, ψ �= 0, the GLS can still estimate the coerfficients

of those time-invariant variables.

4. Dynamic Models

When the regressors of a linear model contains lagged dependent variables, say, of the

form

y
˜i

= y
˜i,−1

γ + Xiβ
˜

+ e
˜
αi + u

˜i = Ziθ
˜

+ e
˜
αi + u

˜i, i = 1, . . . , N. (4.1)

where y
˜i,−1

= (yi0, . . . , yi,T−1)′, Zi = (y
˜i,−1

, Xi) and θ
˜

= (γ, β
˜
′)′. For ease of notation, we

assume that yi0 are observable. Technically, we can still eliminate the individual-specific

effects by premultiplying (4.1) by the transformation matrix Q (Qe
˜

= 0
˜
),

Qy
˜i

= QZiθ
˜

+ Qu
˜i. (4.2)
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However, because of the presence of lagged dependent variables, EQZiu
˜
′
iQ

′ �= 0 even with

the assumption that uit is independently, identically distributed across i and over t. For

instance, the covariance transformation matrix Q = IT − 1
T e

˜
e
˜
′ transforms (4.1) into the

form

(yit − ȳi) = (yi,t−1 − ȳi,−1)γ + (x
˜it − x̄

˜i)
′β
˜

+ (uit − ūi),
i = 1, . . . , N,
t = 1, . . . , T,

(4.3)

where ȳi = 1
T

T∑
t=1

yit, ȳi,−1 = 1
T

T∑
t=1

yi,t−1 and ūi = 1
T

T∑
t=1

uit. Although, yi,t−1 and uit are

uncorrelated under the assumption of serial independence of uit, the covariance between

ȳi,−1 and uit or yi,t−1 and ūi is of order (1/T) if | γ |< 1. Therefore, the covariance

estimator of θ
˜

creates a bias of order (1/T) when N → ∞ (Anderson and Hsiao (1981,

1982), Nickell (1981)). Since most panel data contain large N but small T , the magnitude

of the bias can not be ignored (e.g. with T=10 and γ=0.5, the asymptotic bias is -0.167).

When EQZiu
˜
′
iQ

′ �= 0
˜
, one way to obtain a consistent estimator for θ

˜
is to find instru-

ments Wi that satisfy

EWiu
˜
′
iQ

′ = 0
˜
, (4.4)

and

rank (WiQZi) = k, (4.5)

where k denotes the dimension of (γ, β
˜
′)′, then apply the generalized instrumental variable

or generalized method of moments estimator (GMM) by minimizing the objective function

[
N∑

i=1

Wi(Qy
˜i

− QZiθ
˜
)

]′ [ N∑
i=1

WiQu
˜iu˜

′
iQ

′W ′
i

]−1 [
N∑

i=1

Wi(Qy
˜i

− QZ
˜ iθ˜

)

]
, (4.6)

with respect to θ
˜
. (e.g. Ahn and Honoré (2003), Ahn and Schmidt (1995), Arellano and

Bond (1991), Arellano and Bover (1995)). For instance, one may let Q be a (T − 1) × T

matrix of the form

D =

⎡
⎢⎣
−1 1 0 · ·
0 −1 1 · ·
0 · · · ·
· · · −1 1

⎤
⎥⎦ , (4.7)
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then the transformation (4.2) is equivalent to taking the first difference of (4.1) over time

to eliminate αi for t = 2, . . . , T ,

∆yit = ∆yi,t−1γ + ∆x
˜
′
itβ

˜
+ ∆uit,

i = 1, . . . , N,
t = 2, . . . , T,

(4.8)

where ∆ = (1−L) and L denotes the lag operator, Lyt = yt−1. Since ∆uit = (uit−ui,t−1)

is uncorrelated with yi,t−j for j ≥ 2 and x
˜is, for all s, when uit is independently distributed

over time and x
˜it is exogenous, one can let Wi be a T (T − 1)[K + 1

2 ] × (T − 1) matrix of

the form

Wi =

⎡
⎢⎢⎢⎣

q
˜i2

0
˜

· ·
0
˜

q
˜is

· ·
· · · ·
· · · ·
· · · q

˜iT

⎤
⎥⎥⎥⎦ , (4.9)

where q
˜it

= (yi0, yi1, . . . , yi,t−2, x
˜
′
i)

′, x
˜i = (x

˜
′
i1, . . . , x˜

′
iT )′, and K = k − 1. Under the

assumption that (y
˜
′
i
, x
˜
′
i) are independently, identically distributed across i, the Arellano-

Bover (1991) GMM estimator takes the form

θ̂
˜AB,GMM =

⎧⎨
⎩

[
N∑

i=1

Z ′
iD

′W ′
i

][
N∑

i=1

WiAW ′
i

]−1 [
N∑

i=1

WiDZi

]⎫⎬
⎭

−1

⎧⎨
⎩

[
N∑

i=1

Z ′
iDW ′

i

] [
N∑

i=1

WiAW ′
i

]−1 [
N∑

i=1

WiDy
˜i

]⎫⎬
⎭

(4.10)

where A is a (T −1)× (T −1) matrix with 2 on the diagonal elements, −1 on the elements

above and below the diagonal elements and 0 elsewhere.

The GMM estimator has the advantage that it is consistent and asymptotically nor-

mally distributed whether αi is treated as fixed or random because it eliminates αi from

the specification. However, the number of moment conditions increases at the order of T 2

which can create severe downward bias in finite sample (Ziliak (1997)). An alternative is

to use a (quasi-) likelihood approach which has the advantage of having a fixed number of

orthogonality conditions independent of the sample size. It also has the advantage of mak-

ing use all the available sample, hence can yield more efficient estimator than (4.10) (e.g.
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Hsiao, Pesaran and Tahmiscioglu (2002), Binder, Hsiao and Pesaran (2004)). Since there

is no reason to assume that the data generating process of initial observations, yi0, to be

different from the rest of yit, the likelihood approach has to formulate the joint likelihood

function of (yi0, yi1, . . . , yiT ) (or the conditional likelihood function (yi1, . . . , yiT | yi0)).

However, yi0 depends on previous values of x
˜i,−j and αi which are unavailable. Bhargava

and Sargan (1983) suggest to circumscribe this missing data problem by conditioning yi0

on x
˜i and αi if αi is treated as random while Hsiao, Pesaran and Tahmisciogulu (2002)

propose conditioning (yi1−yi0) on the first difference of x
˜i if α is treated as fixed constants.

5. Random vs Fixed Effects Specification

The advantages of random effects (RE) specifications are:

1. The number of parameters stay constant when sample size increases.

2. It allows the derivation of efficient estimators that make use of both within and

between (group) variation.

3. It allows the estimation of the impact of time-invariant variables.

The disadvantages of RE specification is that it typically assumes that the individual-

and/or time-specific effects are randomly distributed with a common mean and are inde-

pendent of x
˜it. If the effects are correlated with x

˜it or if there is a fundamental difference

among individual units, i.e., conditional on x
˜it, yit cannot be viewed as a random draw

from a common distribution, common RE model is misspecified and the resulting estimator

is biased.

The advantages of fixed effects (FE) specification are that it allows the individual-

and/or time specific effects to be correlated with explanatory variables x
˜it. Neither does

it require an investigator to model their correlation patterns.

The disadvantages of the FE specification are:

1’. The number of unknown parameters increases with the number of sample obser-

vations. In the case when T (or N for λt) is finite, it introduces the classical
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incidental parameter problem (e.g. Neyman and Scott (1948)).

2’. The FE estimator does not allow the estimation of the coefficients that are time-

invariant.

In other words, the advantages of RE specification are the disadvantages of FE speci-

fication and the disadvantages of RE specification are the advantages of FE specification.

To choose between the two specifications, Hausman (1978) note that the FE estimator

(or GMM), θ̂
˜FE, is consistent whether αi is fixed or random. On the other hand, the

commonly used RE estimator (or GLS), θ̂
˜RE , is consistent and efficient only when αi is

indeed uncorrelated with x
˜it. If αi is correlated with x

˜it, the RE estimator is inconsistent.

Therefore, Hausman (1978) suggests using the statistic

(
θ̂
˜FE − θ̂

˜RE

)′ [
Cov(θ̂

˜FE) − Cov(θ̂
˜RE)

]− (
θ̂
˜FE − θ̂

˜RE

)
(5.1)

to test RE vs FE specification. The statistic (5.1) is asymptotically chi-square distributed

with degrees of freedom equal to the rank of
[
Cov(θ̂

˜GMM ) − Cov(θ̂
˜RE)

]
.

6. Nonlinear Models

The introduction of individual-specific effects, αi, and/or time-specific effects, λt,

provide a simple way to capture the unobserved heterogeneity across i and over t. However,

the likelihood functions are in terms of observables, (y
˜i

, x
˜i), i = 1, . . . , N . Therefore, we will

have to either treat αi as unknown parameters (fixed effects) and consider the conditional

likelihood,

f(y
˜i

| x
˜i, β

˜
, αi), i = 1, . . . , N, (6.1)

or to treat αi as random and consider the marginal likelihood

f(yi | x
˜i; β

˜
) =

∫
f(yi | x

˜i, β
˜
, αi)f(αi | x

˜i)dαi, i = 1, . . . , N, (6.2)

where f(αi | x
˜i) denotes the conditional density of αi given x

˜i.

When the unobserved individual specific effects, αi, (and or time-specific effects, λt)

affect the outcome, yit, linearly, one can avoid the consideration of random versus fixed
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effects specification by eliminating them from the specification through some linear trans-

formation such as the covariance transformation (3.3) or first difference transformation

(4.8). However, if αi affects yit nonlinearly, it is not easy to find transformation that can

eliminate αi. For instance, consider the following binary choice model where the observed

yit takes the value of either 1 or 0 depending on the latent response function

y∗
it = β

˜
′x
˜it + αi + uit, (6.3)

and

yit =
{

1, if y∗
it > 0,

0, if y∗
it ≤ 0,

(6.4)

where uit is independently, identically distributed with density function f(uit). Let

yit = E(yit | x
˜it, αi) + εit, (6.5)

then

E(yit | x
˜it, αi) =

∫ ∞

−(β
˜

′x
˜it

+αi)

f(u)du

= [1 − F (−β
˜
′x
˜it − αi)].

(6.6)

Since αi affects E(yit | x
˜it, αi) nonlinearly, αi remains after taking successive difference of

yit,
yit − yi,t−1 = [1 − F (−β

˜
′x
˜it − αi)]

− [1 − F (−β
˜
′x
˜i,t−1 − αi)] + (εit − εi,t−1).

(6.7)

The likelihood function conditional on x
˜i and αi takes the form,

ΠN
i=1Π

T
t=1[F (−β

˜
′x
˜it − αi)]1−yit [1 − F (−β

˜
′x
˜it − αi)]yit . (6.8)

If T is large, consistente estimator of β
˜

and αi can abe obtained by maximizing (6.8). If T

is finite, there is only limited information about αi no matter how large N is. The presence

of incidental parameters, αi, violates the regularity conditions for the consistency of the

maximum likelihood estimator of β
˜
.
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If f(αi | x
˜i) is known, and is characterized by a fixed dimensional parameter vector,

consistent estimator of β
˜

can be obtained by maximizing the marginal likelihood function,

ΠN
i=1

∫
ΠT

t=1[F (−β
˜
′x
˜it − αi)]1−yit [1 − F (−β

˜
′x
˜it − αi)]yitf(αi | x

˜i)dαi. (6.9)

However, maximizing (6.9) involves T -dimensional integration. Butler and Moffit (1982),

Chamberlain (1984), Heckman (1981), etc., have suggested methods to simplify the com-

putation.

The advantage of RE specification is that there is no incidental parameter problem.

The problem is that f(αi | x
˜i) is in general unknown. If a wrong f(αi | x

˜i) is pos-

tulated, maximizing the wrong likelihood function will not yield consistent estimator of

β
˜
. Moreover, the derivation of marginal likelihood through multiple integration may be

computationally infeasible. The advantage of FE specification is that there is no need to

specify f(αi | x
˜i). The likelihood function will be the product of individual likelihood (e.g.

(6.8)) if the errors are assumed i.i.d. The disadvantage is that it introduces incidental

parameters.

A general approach of estimating a model involving incidental parameters is to find

transformations to transform the original model into a model that does not involve inciden-

tal parameters. Unfortunately, there is no general rule available for nonlinear models. One

has to explore the specific structure of a nonlinear model to find such a transformation.

For instance, if f(u) in (6.3) is logistic, then

Prob (yit = 1 | x
˜it, αi) =

eβ˜
′x
˜it+αi

1 + eβ˜
′x
˜it+αi

. (6.10)

Since, in a logit model, the denominators of Prob(yit = 1 | x
˜it, αi) and Prob(yit = 0 |

x
˜it, αi) are identical and the numerator of any sequence {yi1, . . . , yiT} with

T∑
t=1

yit = s is

always equal to exp (αis)·exp{
T∑

t=1
(β
˜
′x
˜it)yit}, the conditional likelihood function conditional

on
T∑

t=1
yit = s will not involve the incidental parameters αi. For instance, consider the

13



simple case that T = 2, then

Prob(yi1 = 1, yi2 = 0 | yi1 + yi2 = 1) =
eβ˜

′x
˜i1

eβ˜
′x
˜i1 + eβ˜

′x
˜i2

=
1

1 + e
β
˜

′
∆x

˜i2

,

(6.11)

and

Prob(yi1 = 0, yi2 = 1 | yi1 + yi2 = 1) =
e
β
˜

′
∆x

˜i2

1 + e
β
˜

′
∆x

˜i2

, (6.12)

(Chamberlain (1980), Hsiao (2003)).

Alternatively, Manski (1987) exploits the latent linear structure of (6.3) by noting

that for given i,

β
˜
′x
˜it

>
=
<

β
˜
′x
˜i,t−1 ⇐⇒ E(yit | x

˜it, αi)
>
=
<

E(yi,t−1 | x
˜i,t−1, αi), (6.13)

and suggests maximizing the objective function

HN (b) =
1
N

N∑
i=1

T∑
t=2

sgn(b
˜
′∆x

˜it)∆yit, (6.14)

where sgn(w) = 1 if w > 0, = 0 if w = 0, and −1 if w < 0. The advantage of the Manski

(1987) maximum score estimator is that it is consistent without the knowledge of f(u).

The disadvantage is that (6.13) holds for any cβ
˜

where c > 0. Only the relative magnitude

of the coefficients can be estimated with some normalization rule, say ‖ β
˜
‖= 1. Moreover,

the spped of convergence is considerably slower (N1/3) and the limiting distribution is

quite complicated. Horowitz (19 ) and Lee ( ) have proposed modified estimators that

improve the speed of convergence and are asymptotically normally distributed.

Other examples of exploiting specific structure of nonlinear models to eliminate the

effects of incidental parameters αi include dynamic discrete choice models (Chamberlain

(1993), Honoré and Kyriazidou (2000), Hsiao, Shen, Wang and Weeks (2004)), symmet-

rically trimmed least squares estimator for truncated and censored data (Tobit models)

(Honoré (1992)), sample selection models (or type II Tobit models) (Kyriazidou (1997)),
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etc. However, often they impose very severe restrictions on the data such that not much

information of the data can be utilized to obtain parameter estimates. Moreover, there are

models such that there does not appear to possess consistent estimator when T is finite.

An alternative to consider consistent estimators is to consider bias reduced estimator.

The advantage of such an approach is that the bias reduced estimators may still allow the

use of all the sample information so that from a mean square error point of view, the bias

reduced estimator may still dominate a consistent estimators because the latter often have

to throw away a lot of sample, thus tend to have large variances.

Following the idea of Cox and Reid (1987), Arellano (2001) and Carro (2004) propose

to derive the modified MLE by maximizing the modified log-likelihood function

L∗(β
˜
) =

N∑
i=1

[
	∗i (β

˜
, α̂i(β

˜
)) − 1

2
log 	∗i,didi

(β1α̂i(β
˜
)
]

, (6.15)

where 	∗i (β
˜
, α̂i(β

˜
)) denotes the concentrated log-likelihood function of y

˜i
after substi-

tuting the MLE of αi in terms of β
˜
, α̂i(β

˜
), (i.e., the solution of ∂logL

∂αi
= 0 in terms of

β
˜
, i = 1, . . . , N), into the log-likelihood function and 	∗i,αiαi

(β
˜
, α̂i(β

˜
)) denotes the second

derivative of 	∗i with respect to αi. The bias correction term is derived by noting that to the

order of (1/T ) the first derivative of 	∗i with respect to β
˜

converges to 1
2

E[�∗i,βαiαi
(β
˜

,αi)]

E[�∗
i,αiαi

(β
˜

,αi)]
. By

subtracting the order (1/T) bias from the likelihood function, the modified MLE is biased

only to the order of (1/T 2), without increasing the asymptotic variance.

Monte Carlo experiments conducted by Carro (2004) have shown that when T = 8,

the bias of modified MLE for dynamic probit and logit models are negligible. Another

advantage of the Arellano-Carro approach is its generality. For instance, a dynamic logit

model with time dummy explanatory variable can not meet the Honoré and Kyriazidou

(2000) conditions for generating consistent estimator, but will not affect the asymptotic

properties of the modified MLE.

7. Modeling Cross-Sectional Dependence

Most panel studies assume that apart from the possible presence of individual in-
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variant but period varying time specific effects, λt, the effects of omitted variables are

independently distributed across cross-sectional units. However, often economic theory

predicts that agents take actions that lead to interdependence among themselves. For ex-

ample, the prediction that risk averse agents will make insurance contracts allowing them

to smooth idiosyncratic shocks implies dependence in consumption across individuals. Ig-

noring cross-sectional dependence can lead to inconsistent estimators, in particular when

T is finite (e.g. Hsiao and Tahmiscioglu (2005)). Unfortunately, contrary to the time series

data in which the time label gives a natural ordering and structure, general forms of depen-

dence for cross-sectional dimension are difficult to formulate. Therefore, econometricians

have relied on strong parametric assumptions to model cross-sectional dependence. Two

approaches have been proposed to model cross-sectional dependence: economic distance

or spatial approach and factor approach.

In regional science, correlation across cross-section units is assumed to follow a cer-

tain spatial ordering, i.e. dependence among cross-sectional units is related to location and

distance, in a geographic or more general economic or social network space (e.g. Anselin

(1988), Anselin and Griffith (1988), Anselin, Le Gallo and Jayet (2005)). A known spatial

weights matrix, W = (wij) an N × N positive matrix in which the rows and columns

correspond to the cross-sectional units, is specified to express the prior strength of the

interaction between individual (location) i (in the row of the matrix) and individual (lo-

cation) j (column), wij . By convention, the diagonal elements, wij = 1. The weights are

often standardized so that the sum of each row,
N∑

j=1

wij = 1.

The spatial weight matrix, W , is often included into a model specification to the

dependent variable, to the explanatory variables, or to the error term. For instance, a

spatial lag model for the NT × 1 variable y
˜

= (y
˜
′
1
, . . . , y

˜
′
N

)′, y
˜i

= (yi1, . . . , yiT )′, may take

the form

y = ρ(W ⊗ IT )y
˜

+ Xβ
˜

+ u
˜

(7.1)

where X and u
˜

denote the NT ×K explanatory variables and NT ×1 vector of error terms,
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respectively, and ⊗ denotes the Kronecker product. A spatial error model may take the

form,

y
˜

= Xβ
˜

+ v
˜
, (7.2)

where v
˜

may be specified as in a spatial autoregressive form,

v
˜

= θ(W ⊗ IT )v
˜

+ u
˜
, (7.3)

or a spatial moving average form,

v
˜

= γ(W ⊗ IT )u
˜

+ u
˜
. (7.4)

The spatial model can be estimated by the instrumental variables (generalized method

of moments estimator) or the maximum likelihood method. However, the approach of defin-

ing cross-sectional dependence in terms of “economic distance” measure requires that the

econometricians have information regarding this “economic distance”. Another approach

to model cross-sectional dependence is to assume that the error of a model, say model

(7.3) follows a linear factor model,

vit =
r∑

j=1

bijfjt + uit, (7.5)

where f
˜t

= (f1t, . . . , frt)′ is a r × 1 vector of random factors, b
˜
′
i = (bi1, . . . , bir), is a r × 1

nonrandom factor loading coefficients, uit, represents the effects of idiosyncratic shocks

which is independent of f
˜t

and is independently distributed across i. (e.g. Bai and Ng

(2002), Moon and Perron (2004), Pesaran (2004)). The conventional time-specific effects

model is a special case of (7.5) when r = 1 and bi = b� for all i and 	.

The factor approach requires considerably less prior information than the economic

distance approach. Moreover, the number of time-varying factors, r, and factor load matrix

B = (bij) can be empirically identified if both N and T are large. However, when T is

large, one can estimate the covariance between i and j, σij, by 1
T

T∑
t=1

v̂itv̂jt directly, then

apply the generalized least squares method, where v̂it is some preliminary estimate of vit.
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8. Concluding Remarks

In this paper we have tried to provide a summary of advantages of using panel data

and the fundamental issues of panel data analysis. Assuming that the heterogeneity across

cross-sectional units and over time that are not captured by the observed variables can be

captured by period-invariant individual specific and/or individual-invariant time specific

effects, we surveyed the fundamental methods for the analysis of linear static and dynamic

models. We have also discussed difficulties of analyzing nonlinear models and modeling

cross-sectional dependence. There are many important issues such as the modeling of joint

dependence or simultaneous equations models, time-varying parameter models (e.g. Hsiao

(1992, 2003), tests of unit root or cointegration (e.g., Levin, Lin and Chu (2003), Pesaran,

Shin and Smith (2004), Hsiao and Pesaran (2004)), the asymptotics for panels with large N

and T (e.g. Phillips and Moon (1999)), unbalanced panel, measurement errors (Griliches

and Hausman (1986), Wansbeek and Konig (1989)), etc. that were not discussed, but

could be found in Baltagi (2001) or Hsiao (2003).

Although panel data offer many advantages, they are not panacea. The power of

panel data to isolate the effects of specific actions, treatments or more general policies

depends critically on the compatibility of the assumptions of statistical tools with the

data generating process. In choosing the proper method, for exploiting the richness and

unique properties of the panel, it might be helpful to keep the following factors in mind:

First, what advantages do panel data offer us in investigating economic issues over data

sets consisting of a single cross section or time series? Second, what are the limitations

of panel data and the econometric methods that have been proposed for analyzing such

data? Third, when using panel data, how can we increase the efficiency of parameter

estimates? Fourth, are the assumptions underlying the statistical inference procedures

and the data-generating process compatible.
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