979 research outputs found

    Longitudinal Analysis of Android Ad Library Permissions

    Full text link
    This paper investigates changes over time in the behavior of Android ad libraries. Taking a sample of 100,000 apps, we extract and classify the ad libraries. By considering the release dates of the applications that use a specific ad library version, we estimate the release date for the library, and thus build a chronological map of the permissions used by various ad libraries over time. We find that the use of most permissions has increased over the last several years, and that more libraries are able to use permissions that pose particular risks to user privacy and security.Comment: Most 201

    Longitudinal performance analysis of machine learning based Android malware detectors

    Get PDF
    This paper presents a longitudinal study of the performance of machine learning classifiers for Android malware detection. The study is undertaken using features extracted from Android applications first seen between 2012 and 2016. The aim is to investigate the extent of performance decay over time for various machine learning classifiers trained with static features extracted from date-labelled benign and malware application sets. Using date-labelled apps allows for true mimicking of zero-day testing, thus providing a more realistic view of performance than the conventional methods of evaluation that do not take date of appearance into account. In this study, all the investigated machine learning classifiers showed progressive diminishing performance when tested on sets of samples from a later time period. Overall, it was found that false positive rate (misclassifying benign samples as malicious) increased more substantially compared to the fall in True Positive rate (correct classification of malicious apps) when older models were tested on newer app samples

    Comprehension of Ads-supported and Paid Android Applications: Are They Different?

    Full text link
    The Android market is a place where developers offer paid and-or free apps to users. Free apps are interesting to users because they can try them immediately without incurring a monetary cost. However, free apps often have limited features and-or contain ads when compared to their paid counterparts. Thus, users may eventually need to pay to get additional features and-or remove ads. While paid apps have clear market values, their ads-supported versions are not entirely free because ads have an impact on performance. In this paper, first, we perform an exploratory study about ads-supported and paid apps to understand their differences in terms of implementation and development process. We analyze 40 Android apps and we observe that (i) ads-supported apps are preferred by users although paid apps have a better rating, (ii) developers do not usually offer a paid app without a corresponding free version, (iii) ads-supported apps usually have more releases and are released more often than their corresponding paid versions, (iv) there is no a clear strategy about the way developers set prices of paid apps, (v) paid apps do not usually include more functionalities than their corresponding ads-supported versions, (vi) developers do not always remove ad networks in paid versions of their ads-supported apps, and (vii) paid apps require less permissions than ads-supported apps. Second, we carry out an experimental study to compare the performance of ads-supported and paid apps and we propose four equations to estimate the cost of ads-supported apps. We obtain that (i) ads-supported apps use more resources than their corresponding paid versions with statistically significant differences and (ii) paid apps could be considered a most cost-effective choice for users because their cost can be amortized in a short period of time, depending on their usage.Comment: Accepted for publication in the proceedings of the IEEE International Conference on Program Comprehension 201

    Characterizing Location-based Mobile Tracking in Mobile Ad Networks

    Full text link
    Mobile apps nowadays are often packaged with third-party ad libraries to monetize user data

    Third Party Tracking in the Mobile Ecosystem

    Full text link
    Third party tracking allows companies to identify users and track their behaviour across multiple digital services. This paper presents an empirical study of the prevalence of third-party trackers on 959,000 apps from the US and UK Google Play stores. We find that most apps contain third party tracking, and the distribution of trackers is long-tailed with several highly dominant trackers accounting for a large portion of the coverage. The extent of tracking also differs between categories of apps; in particular, news apps and apps targeted at children appear to be amongst the worst in terms of the number of third party trackers associated with them. Third party tracking is also revealed to be a highly trans-national phenomenon, with many trackers operating in jurisdictions outside the EU. Based on these findings, we draw out some significant legal compliance challenges facing the tracking industry.Comment: Corrected missing company info (Linkedin owned by Microsoft). Figures for Microsoft and Linkedin re-calculated and added to Table
    • …
    corecore