
International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2019), Oxford, United Kingdom, June 3-4, 2019

Longitudinal performance analysis of machine

learning based Android malware detectors

Suleiman Y. Yerima

Cyber Technology Institute, School of Computer Science and

Informatics,

De Montfort University,

Leicester, United Kingdom

syerima@dmu.ac.uk

Sarmadullah Khan

Cyber Technology Institute, School of Computer Science and

Informatics,

De Montfort University

Leicester, United Kingdom

sarmadullah.khan@dmu.ac.uk

Abstract—This paper presents a longitudinal study of the

performance of machine learning classifiers for Android

malware detection. The study is undertaken using features

extracted from Android applications first seen between 2012

and 2016. The aim is to investigate the extent of performance

decay over time for various machine learning classifiers

trained with static features extracted from date-labelled benign

and malware application sets. Using date-labelled apps allows

for true mimicking of zero-day testing, thus providing a more

realistic view of performance than the conventional methods of

evaluation that do not take date of appearance into account. In

this study, all the investigated machine learning classifiers

showed progressive diminishing performance when tested on

sets of samples from a later time period. Overall, it was found

that false positive rate (misclassifying benign samples as

malicious) increased more substantially compared to the fall in

True Positive rate (correct classification of malicious apps)

when older models were tested on newer app samples.

Keywords—Android malware detection, longitudinal

performance analysis, static analysis, Machine Learning,

Android security

I. INTRODUCTION

Android is the leading mobile operating system
worldwide with nearly 75% market share as at January 2019
[1]. Its popularity, coupled with the availability of numerous
third-party Android app distribution channels makes it a
prime target for malware. It is estimated that more than 25
million mobile malware samples have been seen in the wild
as at September 2018 [2], and majority target the Android
platform. With the increase in Android malware in recent
years, substantial research effort has been directed towards
machine learning based detection. Several works have
proposed and investigated machine learning based Android
malware detection based on dynamic and/or static features.

Most of the existing studies on machine learning based
malware detection have presented performance results using
conventional methods that do not consider time periods or
the age of the testing samples. Despite the proliferation of
machine learning based malware detection research, there are
hardly any studies that provide a comprehensive longitudinal
view of performance. Hence, in this paper, a longitudinal
performance analysis of machine learning based Android
malware detectors is presented. The aim of the study is to
investigate the extent of performance decay over time for
various machine learning classifiers trained with features
extracted from date-labelled benign and malware samples.
The classifiers are then tested on benign and malware
samples from a later time period, thus mimicking true zero-
day scenario that gives a more realistic view of performance
than traditional evaluation approach. The classifiers studied
include Naïve Bayes (NB), Support Vector Machines
(SVM), Random Forest (RF), J48 Decision Tree and Simple

Logistic (SL). These have been trained using 350 features
obtained from static based analysis of each of the apps in the
corpora. The apps used in the experiments are date-stamped
between February 2012 and January 2016, i.e. the time they
first appeared.

The rest of the paper is organized as follows: Section II
discusses related work, while Section III presents
methodology and the experiments performed. Section IV
presents the results and discussion of results and Section V is
the conclusion and future work.

II. RELATED WORK

As mentioned earlier, several works exist that focus on
machine learning based detection of Android malware. They
can be categorized mainly into static feature-based and
dynamic feature-based. A third category combines the two
into a hybrid approach.

In [3], an iterative classifier fusion system is developed
for the detection of Android malware, based on hybrid static
and dynamic features including permissions, dalvik opcodes,
control-flow graph (CFG) and call graph. Their approach
uses a general-purpose meta-procedure to iteratively select
features for a given base classifier within the multi-tier
iterative classifier fusion system (ICFS). The paper used the
well-known MalGenome dataset (consisting of malware
samples collected between 2011 and 2012). Although, their
results compared ICFS outcome to those from traditional
classifiers using stratified 10-fold cross validation, the paper
did not present a longitudinal view of the system’s
performance.

DroidFusion [4] is a novel classifier fusion approach for
Android malware detection which was evaluated on static
features i.e. permissions, API calls, intents, commands, and
other static app properties. The system applies a set of
ranking-based algorithms to combine base classifiers in order
to improve the overall prediction accuracy. Experiments
were performed using samples from MalGenome, Drebin
[24], and McAfee datasets to evaluate the system. In the
paper, conventional stratified 10-fold cross validation as well
training/validation/testing ratio were used to evaluate
performance with no longitudinal performance results on
time-labelled samples presented.

PIndroid [5] is a permissions and intents based
framework for identifying malware apps. It uses a
combination of permissions and intents coupled with
ensemble learning methods to detect malware. Evaluation is
based on conventional 10-fold cross-validation and 80:20
training/testing ratio. The reported accuracy in the paper is
99.8% when tested on 1,745 apps. DroidSieve [6] is an
Android malware classifier based on static analysis that is
designed to be fast, accurate and resilient to obfuscation. It

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228190134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2019), Oxford, United Kingdom, June 3-4, 2019

exploits obfuscation-invariant features and artefacts
introduced by obfuscation mechanisms used in malware.
DroidSieve achieved up to 99.82% accuracy for malware
detection and 99.26% accuracy for family identification
when tested on over 100K malware and benign apps. W.
Wang et al. [7] presented a system for detecting Android
malware and categorization of benign apps using ensemble
of classifiers. They employed 11 different types of static
features including requested permissions, filtered intents,
suspicious API calls, hardware features, code-related
information etc. The ensembled base classifiers include
Naïve Bayes, Random Forest, SVM, KNN, and CART. The
system was tested on 116,028 app samples achieving 99.39%
detection accuracy. Paper [8] also considered an ensemble of
various classifiers but experimented on a more limited
number of samples to obtain 95.6% accuracy with the best
ensemble model.

DroidEnsemble [9] also utilizes static features like
permissions, hardware features, filtered intents, restricted
API calls, used permissions, code patterns and function call
graphs with an ensemble of SVM, KNN and Random Forest.
It was evaluated on 1386 benign apps and 1296 malapps
achieving a detection accuracy of up to 98.4%. Some papers
such as [10], [11], [12], [29] and [30], employ static analysis-
based opcode features with machine learning for Android
malware detection. Other papers utilize tools such as
Droidbox [13] or Dynalog [14] to extract dynamic features
[15] for training machine learning based classifiers. Papers
[16]-[21] also present dynamic analysis-based work for
Android malware detection, while [22], [23], [31] and [32]
use both static and dynamic features.

In all of these existing Android malware detection
research papers, long term performance and longitudinal
resilience is not investigated. The authors of [27] evaluated
their ensemble learning based malware detection system
called EnDroid on testing samples that were from a distinct
time period from the training samples; however, their work
was not an extensive longitudinal evaluation. The work only
used 5K benign samples covering a few months (January
2017 to March 2017) and 5K malware samples considered to
be post-2015 from AndroZoo for validation (testing). The
training samples used consisted of 5213 malware apps from
the Drebin dataset (considered to be pre-2015) coupled with
8806 benign apps dated April 2016 to Sept. 2016. Their
experiments were intended to validate the performance of
EnDroid rather than present a timeline analysis of
performance. In [33], a framework called Transcend is
proposed for detecting the onset of performance decay i.e.
concept drift in machine learning based malware
classification models. Transcend is designed to detect aging
classification models in vivo during deployment by using a
statistical comparison of samples seen during deployment
with those used to train the model. It then raises a red flag
before the model starts making consistently poor decisions
due to out-of-date training. Unlike Transcend, this paper
does not aim to provide a detection solution for concept drift
but focuses on investigating the extent of drift for Android
malware detection models using time-labelled samples from
2012 to 2016.

 A possible reason for the scarcity of longitudinal
performance studies in the current literature could be lack of
access to suitable time-labelled datasets. Nevertheless, due
to the evolution of malicious apps, evaluating the

performance over time is important to gain a realistic
outlook on the systems being designed for their detection.
The study in our paper therefore presents a complementary
view to the current results published in the literature, by
focusing on the longitudinal performance of the machine
learning based Android malware detection.

III. METHODOLOGY AND EXPERIMENTS

A. Datasets

For the purpose of our study, datasets were created from
a set of benign and malware apps that were each labelled by
their hash value and date seen. The dates ranged from 14th
February 2012 to 16th January 2016. This initial set of
36,183 applications contained 13,805 malware apps and
22,378 benign (clean) applications from McAfee (Intel
Security) and have been utilized in our previous work [4].
The apps were processed using a bespoke APK analysis tool
developed in Python to extract static features. This resulted
in a feature dataset that was sorted out according to the dates
and then separated into four groups consisting of data for
apps from 2012, 2013, 2014 and 2015-2016 respectively.
These feature datasets were used to train the machine
learning classifiers which were subsequently evaluated in
line with the objective of this study. The numbers of the
malware and benign apps represented in the feature dataset
for each year are shown in Table I. It was decided to merge
the 2016 data with the 2015 data because of the relatively
small size of the 2016 samples (since only January 2016 apps
were present in the collection). Moreover, the apps from the
2015-2016 date range were intended solely to be used for
testing during the experiments. For this reason, merging the
2015 and 2016 samples would not defeat the aim of the
study.

TABLE I. DATASET STATISTICS. NUMBER OF SAMPLES OF EACH

CLASS REPRESENTED IN THE FEATURE DATASET USED FOR THE

EXPERIMENTS.

 2012 2013 2014 2015-2016

Malware 512

(24.2%)

1959

 (37.4%)

 1491

(30.2%)

 9843

 (41.2%)

Benign 1601

 (75.8%)

3272

 (62.6%)

 3448

(69.8%)

 14057

 (58.8%)

Total 2113 5231 4939 23900

B. Application features extraction

The features used to create the training and testing sets
were obtained from the apps through the bespoke APK
analysis tool mentioned earlier. The tool enables automated
feature extraction from Android apps. It is capable of
extracting permissions and intents from the APK manifest
file as well as API calls from the dex file (through automated
reverse engineering). In addition, the tool enables us to check
for the presence of embedded .dex, .jar, .zip, .so and .exe
files (or files of any extension) within the APK. Furthermore,
code from system libraries and third-party ad libraries were
filtered out during the feature extraction process using a list
of commonly used ad libraries from [25]. An overview of the
utilised feature extraction process can be found in [4].

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2019), Oxford, United Kingdom, June 3-4, 2019

In total, 350 features were extracted from the apps, and
these consisted of API calls, permissions, intents, and other
attributes (e.g. command strings, presence of embedded
executables etc.). All 350 features are present in the feature
datasets that were used in the experiments presented in this
paper. Table II shows a partial list of the extracted features;
the full list is available at [26]. The 350 features provided the
input vectors that are used to represent each app in the
feature datasets. The datasets are organized into a matrix of
input vectors saved in .csv files for training the machine
learning classifiers. Each app is represented as a row of
feature vectors, with each column of the vector
corresponding to a given feature and represented by a ‘1’ if
present or a ‘0’ if absent from the app. The last column
carries the class label of ‘malware’ or ‘benign’.

TABLE II. A SUBSET OF THE STATIC FEATURES EXTRACTED FROM THE

APPS USING THE PYTHON-BASED AUTOMATED STATIC ANALYSIS TOOL.
FULL LIST OF FEATURES IS AVAILABLE AT [26].

Features Category

Ljava/util/Timer.schedule Utilities API

READ PHONE STATE Permission

getDeviceId (TelephonyManager) Framework res. API

Ljava/net/URL.openStream System res. API

Ljava/io/FileOutputStream.write System res. API

Class.getClassLoader DVM res. API

Ljava/lang/System.loadLibrary DVM res. API

intent.action.SMS RECEIVED Intent

SEND SMS Permission

getConnectionInfo (WifiManager) System res. API

getSubscriberId (TelephonyManager) Framework res. API

intent.action.PHONE STATE Intent

getWifiState (WifiManager) System res. API

intent.action.SEND Intent

Ljava/io/File.mkdir System res. API

.open (AssetManager) Framework res. API

chown Command string

RECEIVE SMS Permission

Ljava/lang/Runtime.exec DVM res. API

.read (ZipInputStream) Utilities API

C. Machine learning classifires and evaluation metrics

The machine learning classifiers evaluated in the
longitudinal performance study include Naïve Bayes (NB),
Simple Logistic (SL), Random Forest (RF), Support Vector
Machine (SVM), and J48 Decision Tree. For the evaluation,
four metrics are considered: True Positive Rate (TPR), False
Positive Rate (FPR), Overall accuracy (ACC) and Weighted
F-measure (W-FM) [4]. TPR represents the rate of correct
classification of the malicious applications, while FPR
represents the rate of misclassification of the clean (benign)
applications.

IV. RESULTS AND DISSCUSSIONS

In this section, the results of the experiments undertaken
to analyse the longitudinal performance of the machine
learning classifiers are presented. The discussion of results

will be split into three subsections. Each subsection will
focus on evaluating machine learning models trained using
the feature dataset of samples from 2012, 2013, and 2014
respectively.

A. Experiment 1: Analysis of models trained with 2012

samples

In this subsection, the results of experiments on machine
learning detectors trained with 2012 data is presented. In
order to examine the longitudinal performance, these models
are evaluated on the 2013, 2014 and 2015-2016 datasets
described in section III-A. The 2012 models were trained
with the available 512 malware and 1061 clean samples’
feature datasets (Table I).

From Fig. 1, it can be noted that the overall classification
accuracy decreases for all the classifiers when tested on
2013, 2014, and 2015-16 datasets respectively. Table III
shows the numerical results; full results including TPR, FPR
and W-FM can be seen in the Appendix (Tables VI and VII).
NB classification accuracy decreased from 84% (2013) to
54% (2014) and then down to 46% (2015-16). J48 went from
90.3% on 2013 data, to 80.6% on 2014 data, and down to
69.9% on 2015-2016 data. For SVM (linear) it was 92%
(2013), 79.5% (2014) and 65% (2015-16) respectively. RF
had 93.9% (2013), 81.1% (2014), and 68% (2015-16). SL
started with 92.7% (2013) then dropped to 83.2% (2014) and
75.1% (2015-2016).

If we imagine that this scenario emulates a zero-day
situation where emerging apps were tested as they appear,
then RF experienced a 28% decline in overall accuracy over
the time period 2013 to 2016. SL can be said to have
declined by 19% in overall accuracy over the same time
period. The lines in Fig. 1 illustrate clearly the drop in the
accuracy exhibited by all the 2012 trained models.

NB, 0.46

J48, 0.699

SVM, 0.65

RF, 0.68

SL, 0.751

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T-2013 T-2014 T-2015-16

A
cc

u
ra

cy

Testing peroid

Fig. 1: Average accuracy of models trained on the 2012 samples
and evaluated on the 2013, 2014 and 2015-2016 samples
respectively.

TABLE III. AVERAGE ACCURACY (2012 TRAINING)

 T-2013 T-2014 T-2015-16

NB 0.840 0.546 0.460

J48 0.903 0.806 0.699

SVM 0.920 0.795 0.650

RF 0.939 0.811 0.680

SL 0.927 0.832 0.751

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2019), Oxford, United Kingdom, June 3-4, 2019

In Fig. 2, the TPR results for all the machine learning
classifiers are depicted for the training on 2012 data.
Although there are performance drops as the models are
tested on 2013, 2014 and 2015-16 data, it is to a lesser
degree than the progressive rise in FPR shown in Fig. 3
(numerical results are in the Appendix). This implies that the
drop in overall accuracy of the models are impacted more by
the misclassification of clean apps than the misclassification
of malware apps.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NB J48 SVM RF SL

TPR for different time peroids (2012 training)

T-2013 T-2014 T-2015-16

Fig. 2: True Positive Rate (malware detection rate) of models
trained on the 2012 samples and tested on the 2013, 2014 and 2015-
2016 samples respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NB J48 SVM RF SL

FPR for different time peroids (2012 training)

T-2013 T-2014 T-2015-16

Fig. 3: False Positive Rate (benign misclassification rate) of models
trained on the 2012 samples and tested on the 2013, 2014 and 2015-
2016 samples respectively.

NB, 0.468

J48, 0.717

SVM, 0.645
RF, 0.681

SL, 0.782

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T-2013-FH T-2013-SH T-2014-FH T-2014-SH T-2015-FH T-2015-SH

A
cc

u
ra

cy

Testing period (FH- first half, SH- second half)

Fig. 4: Average accuracy of models trained on the 2012 samples
and evaluated on six-monthly portions of the 2013, 2014 and 2015-
2016 samples respectively.

TABLE IV. DATASET STATISTICS. NUMBER OF SAMPLES OF EACH

CLASS REPRESENTED IN THE FEATURE DATASET USED FOR THE SIX-
MONTHLY EXPERIMENTS.

 Malware Benign Total

2013-FH 1078 566 1644

2013-SH 881 2706 3587

2014-FH 613 1628 2241

2014-SH 878 1820 2698

2015-FH 2407 3928 6335

2015-SH
(plus Jan 2016)

7436 10129 17565

In Fig. 4, a more granular average accuracy result is
presented. This is obtained from splitting the testing samples
from each year into two i.e. first half (FH) and second half
(SH) to give an approximately six-monthly view of
longitudinal performance. The numbers of malware and
benign samples in each yearly split are shown in Table IV,
and the full results obtained from testing the 2012 models on
the six-monthly test sets are shown in Table IX in the
appendix. As expected, the performance diminishes more
gently on the six-monthly split compared to the previous
yearly results. Also, the same trend of more rapid FPR rise
compared to TPR decline can be noticed with the six-
monthly split results (see Table IX).

B. Experiment 2: Analysis of models trained with 2013

samples

Here, the results of experiments on machine learning
detectors trained with 2013 data (1959 malware and 3272
benign) is presented. In order to examine the longitudinal
performance, these models are evaluated on the 2014 dataset
and 2015-2016 datasets respectively. As was the case with
the 2012 models, there is a degradation in overall accuracy
during the second testing time period for all classifiers. This
can be seen in Table V and Fig. 5. For both time periods, the
2013 SVM model had the highest overall accuracy but also
suffered the least loss.

As was the case with the 2012 models, the
misclassification of benign applications (see FPR in Fig. 7)
contributed more to the overall loss in accuracy compared to
the malware misclassification (see TPR in Fig. 6). For
example, with the SL model, initial misclassification rate
was ~13% for malware and ~16% for benign. In the second
time period, misclassification rates for SL were ~12% for
malware and ~30% for benign (see Table VIII in the
appendix for the numerical results).

TABLE V. AVERAGE ACCURACY (2013 TRAINING)

 T-2014 T-2015-16

NB 0.576 0.427

J48 0.834 0.709

SVM 0.882 0.826

RF 0.845 0.746

SL 0.850 0.775

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2019), Oxford, United Kingdom, June 3-4, 2019

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NB J48 SVM RF SL

Average accuracy for different time peroids (2013 training)

T-2014 T-2015-16

Fig. 5: Average accuracy of models trained on the 2013 samples
and tested on the 2014 and 2015-2016 samples respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NB J48 SVM RF SL

TPR for different time peroids (2013 training)

T-2014 T-2015-16

Fig. 6: True Positive Rate (malware detection rate) of models
trained on the 2013 samples and tested on the 2014 and 2015-2016
samples respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NB J48 SVM RF SL

FPR for different time peroids (2013 training)

T-2014 T-2015-16

Fig. 7: False Positive Rate (benign misclassification rate) of models
trained on the 2013 samples and tested on the 2014 and 2015-2016
samples respectively.

C. Experiment 3: Analysis of models trained with 2014

samples

In this section the results of experiments on machine
learning detectors trained with 2014 data (1491 malware and
3448 benign) is presented. In order to examine the
longitudinal performance, these models are evaluated on the
2015-2016 dataset only. Table VI shows the results of the
2014-trained models depicting accuracy, TPR, FPR and W-
FM. The SL classifier has the highest overall accuracy,
slightly better than RF. The RF classifier had the lower FPR
compared to SL (see Table VI).

TABLE VI. RESULTS FOR MODELS TRAINED WITH 2014 SAMPLES:
ACCURACY, TPR, FPR AND W-FM

Testing 2015-16

 ACC TPR FPR W-FM

 NB 0.758 0.777 0.256 0.759

J48 0.812 0.698 0.108 0.809

SVM 0.872 0.818 0.090 0.872

RF 0.897 0.805 0.039 0.895

SL 0.910 0.871 0.063 0.909

In order to gain a longitudinal performance view, we will
compare the results of the 2014 models to the earlier results
of testing the 2012 and 2013 models on the 2015-16 data.
Comparison graphs are depicted in Figs. 8, 9 and 10.

We can see that the overall accuracy of 2014 models
were higher for all the classifiers. Although one can argue
that there were more samples in the 2014 dataset than in the
2012 dataset for model training, the 2013 dataset contains
more training examples than the 2014 dataset. This implies
that the (time) proximity of the 2014 training samples to the
(2015-2016) testing set is the more likely contributing factor
to better performance. It is worth noting that the 2013 dataset
had 468 more malware samples than the 2014 dataset. This
may account for better TPR results for SVM trained with the
2013 compared to when trained with 2014 data. Those of SL
and J48 were slightly better for 2013 compared to 2014 as
well (Fig. 9). Fig. 10 shows that FPR were lowest for 2014
trained models. These results (in Figs. 9 and 10) again
highlight that the performance on the benign samples
account for more of the loss in overall accuracy (in Fig. 8).

One factor that may contribute to the diminishing
performance is the feature set used in training the machine
learning algortihms. Over time, some of the features could
become less discriminative for the following reasons: (a)
more sophisicated evasive techniques appearing more
frequently in the malware apps thus making it problematic to
extract some features that were previously common. (b) the
evolution of the benign apps as more programmers use
newer and advanced features, which when used as indicators
could trigger more false positives.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NB J48 SVM RF SL

Overall accuracy on 2015-16 test data

2012 2013 2014

Fig. 8: Overall accuracy of 2012, 2013 and 2014 models when
tested on 2015-2016 samples.

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2019), Oxford, United Kingdom, June 3-4, 2019

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NB J48 SVM RF SL

TPR on 2015-16 test data

2012 2013 2014

Fig. 9: True positive rate of 2012, 2013 and 2014 models when
tested on 2015-2016 samples.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NB J48 SVM RF SL

FPR on 2015-16 data

2012 2013 2014

Fig. 10: False positive rate of 2012, 2013 and 2014 models when
tested on 2015-2016 samples.

The top 10 most occuring features in the benign samples
within each dataset (by year) are shown in Table X in the
Appendix. From the table, it can be observed that different
features appear in the top 10 for each year’s set. The 2012
top 10 benign features were dominated by permissions i.e.
INTERNET, WRITE_EXTERNAL_STRORAGE, WAKE
LOCK, READ PHONE STATE, ACCESS NETWORK
STATE and RECEIVE BOOT COMPLETED. For 2013,
the same top 10 is maintained but in a different order. The
2014 dataset however, is dominated by API function calls
with only 3 permissions present. For the 2015-16 set, only 2
permisisons remain in the top 10 for benign class. The
variation in the features shown in Table X indicates that the
benign apps are being characterized differently over time by
the features utilized in this study, which could be due to the
changes in the way the newer benign apps were being
programed.

Table XI shows the top 10 features with the highest
information gain for each of the datasets. The information
gain [28] calculates the relevance of a feature or the
information provided by a feature using entropy. The total
information gain of the top 10 for each dataset are as follows:
2012 = 2.134; 2013 = 3.379; 2014 = 1.047; 2015-16 = 1.907.
This confirms that the predictive power of the features
diminished over time since the total information gain present
in the top features was reduced. Note also that the top
features in the newer datasets were different from those in
the older ones. Which means that features that were
previously discriminative lost some of their predictive power

in the later time peroids. Therefore, it becomes apparent that
in addition to peroidic re-training with newer samples,
further measures that can be applied to mitigate the loss of
the features’ predictive power will ultimately contribute to
reducing the diminishing performance over time.

V. CONCLUSION AND FUTURE WORK

As more samples become available, it is expected that the
models used in the detection of Android malware will be
retrained to improve their performance. However, a
longitudinal view of performance can give better insight into
the robustness of the models. It can also inform the re-
training strategy to be adopted. This particular study shows
that based on the static features used for the training, the
machine learning models become much less accurate in
recognizing benign samples over time. Future work may
investigate whether a different set of features such as
opcodes could show better longitudinal resilience. Future
work would also focus on developing schemes and
techniques to mitigate the diminishing performance of the
machine learning based malware detectors.

REFERENCES

[1] http://gs.statcounter.com/os-market-share/mobile/worldwide

[2] McAfee Labs, “McAfee Labs Threats Report” Sept. 2018, pp. 10–11.

[3] J. Abawajy and A. Kelarev, "Iterative Classifier Fusion System for
the Detection of Android Malware," in IEEE Transactions on Big
Data, 2017. doi: 10.1109/TBDATA.2017.2676100

[4] S. Y. Yerima, and S. Sezer ‘DroidFusion: A Novel Multilevel
Classifier Fusion Approach for Android Malware Detection’ IEEE
Transactions on Cybernetics, January 2018, PP. 1-14.
Doi:10.1109/TCYB.2017.2777960

[5] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, Y. Rahulamathavan.
PIndroid: A novel Android malware detection system using ensemble
learning methods. Computers & Security, Vol 68, July 2017, pp. 36-
46.

[6] G. Suarez-Tangill, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, L.
Cavallaro, ‘DroidSeive: Fast and accurate extraction of obfuscated
Android malware’ CODASPY 2017, Arizona, USA, March 2017.

[7] W. Wang, Y. Li, X. Wang, J. Liu, X. Zhang ”Detecting Android
malicious apps and categorizing benign apps with ensemble
classifiers” Future Generation Computer Systems, 2017, ISSN 0167-
739X.

[8] N. Milosevic, A. Dehghantanha, K.-K. R. Choo ”Machine Learning
aided Android malware classification” Computers & Electrical
Engineer- ing, Volume 61, July 2017, pp 266-274.

[9] W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu and X. Zhang,
"DroidEnsemble: Detecting Android Malicious Applications With
Ensemble of String and Structural Static Features," in IEEE Access,
vol. 6, pp. 31798-31807, 2018. doi: 10.1109/ACCESS.2018.2835654

[10] B. Kang, S. Y. Yerima, S. Sezer and K. McLaughlin “N-gram opcode
analysis for Android malware detection” International Journal of
Cyber Situational Awareness, Vol. 1, No. 1, Nov. 2016.

[11] R. K. Shahzad, "Android Malware Detection Using Feature Fusion
and Artificial Data," 2018 IEEE 16th Intl Conf on Dependable,
Autonomic and Secure Computing,
(DASC/PiCom/DataCom/CyberSciTech), Athens, 2018, pp. 702-709.

[12] B. Kang, S. Y. Yerima, K. Mclaughlin, S. Sezer “N-opcode analysis
for android malware classification and categorization” 2016
International Conference On Cyber Security And Protection Of
Digital Services (CyberSecurity), pp.1–7,
doi:10.1109/CyberSecPODS.2016.7502343

[13] DroidBox, Google Archive
https://code.google.com/archive/p/droidbox/

[14] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DynaLog: An
automated dynamic analysis framework for characterizing android
applications,” 2016 International Conference on Cyber Security and
Protection of Digital Services, Cyber Security 2016, 2016.

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2019), Oxford, United Kingdom, June 3-4, 2019

[15] M. K. Alzaylaee, S. Y. Yerima, S. Sezer ”Improving Dynamic
Analysis of Android Apps Using Hybrid Input Test Generation” In
proc. Int. Conf. on CyberSecurity and Protection of Digital Services
(Cyber Security 2017), London, UK, June 19-20, 2017.

[16] Dash, S. K., Suarez-Tangil, G., Khan, S., Tam, K., Ahmadi, M.,
Kinder, J., Cavallaro, L. "DroidScribe: Classifying Android Malware
Based on Runtime Behavior," 2016 IEEE Security and Privacy
Workshops (SPW), San Jose, CA, 2016, pp. 252-261. doi:
10.1109/SPW.2016.25

[17] Cai, H., Meng, N., Ryder, B., Yao, D.: Droidcat : Unified dynamic
detection of android malware (2017)

[18] W.-C. Wu and S.-H. Hung. Droiddolphin: A dynamic android
malware detection framework using big data and machine learning. In
Proceedings of the 2014 Conference on Research in Adaptive and
Convergent Systems, RACS '14, pages 247-252, New York, NY,
USA, 2014. ACM.

[19] V. M. Afonso, M. F. de Amorim, A. R. A. Gregio, G. B. Junquera,
and ´ P. L. de Geus, “Identifying Android malware using dynamically
obtained features ,” Journal of Computer Virology and Hacking
Techniques, 2014

[20] A. Mahindru and P. Singh “Dynamic Permissions based Android
malware detection using machine learning techniques” 10th
Innovations in Software Engineering Conference ISC 2017 Jaipur,
India, Feb. 5-7, 2017. pp 202-210.

[21] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Emulator vs real
phone: Android malware detection using machine learning,” in
Proceedings of the 3rd ACM on International Workshop on Security
And Privacy Analytics, ser. IWSPA ’17. Scottsdale, Arizona, USA
March 24 - 24, 2017: ACM, 2017, pp. 65–72. [Online]. Available:
http://doi.acm.org/10.1145/3041008.3041010

[22] M.-Y. Su, J.-Y. Chang, and K.-T. Fung ”Machine Learning on
Merging Static and Dynamic Features to identify malicious mobile
apps” In proc. 9th Int. Conf. on Ubiquitous and Future Networks
(ICUFN), 2017, Milan, Italy, 4-7 July 2017. pp. 863-867.

[23] Lindorfer, M., Neugschwandtner, M., & Platzer, C. (2015).
MARVIN: Efficient and comprehensive mobile app classification
through static and dynamic analysis. In Proc. IEEE 39th Annual

Computer Software and Applications Conference (COMPSAC),
Volume 2, 422–3433.

[24] D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, and K. Rieck,
“Drebin: Effective and Explainable Detection of Android Malware in
Your Pocket,” Symposium on Network and Distributed System
Security (NDSS), no. February, pp. 23–26, 2014.

[25] Book, T., Pridgen, A., and Wallach D. S.: Longitudinal Analysis of
Android Ad Library Permissions. In Proc. IEEE Mobile Security
Technologies, MoST, (2013).

[26] https://sites.google.com/site/suleimanyerima/resources/list-of-
features-for-static-analysis

[27] P. Feng, J. Ma, C. Sun, X. Xu and Y. Ma “A Novel Dynamic Android
Malware Detection system with Ensemble Learning” IEEE Access,
June 2018.

[28] T. M. Cover, J. A. Thomas, Elements of Information Theory, 2nd
Edition, John Wiley & Sons, inc., Hoboken, New Jersey, 2006, pp.
41.

[29] T. Chen, Q. Mao, Y. Yang, M. Lv and J. Zhu “TniyDroid: A
Lightweight and Efficent Method for Android Malware Detection and
Classification” Mobile Informaion Systems, vol. 2018, Article ID
4157156, 9 pages, 2018. https://doi.org/10.1155/2018/4157156.

[30] N. Bakhshinejad and Ali Hamzeh “ A New Compression Based
Method for Android Malware Detetction Using Opcodes” 2017
Artificial Intelligence and Signal Processing Conference (AISP),
Shiraz, 2017, pp. 256-261. doi: 10.1109/AISP.2017.8324092

[31] L. Xu, D. Zhang, N. Jayasena and J. Cavazos “ HADM: Hybrid
Analysis for Detection of Malware” SAI Intelligent Systems
Conference 2016, Septtember 21-22, 2016, London UK.

[32] A. T. Kabakus and I. A. Dogru. “An In-depth Analysis of Android
Malware Using Hybrid Techniques” Digital Investigation 24 (2018)
pp. 25-33.

[33] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I.
Nouretdinov & L. Cavallaro “Trancend: Detecting Concept Drift in
Malware Classification Models” 26th USENIX Security Symposium,
aug. 16-18 2017, Vancouver, BC, Canada.

Appendix

TABLE VII. RESULTS FOR MODELS TRAINED WITH 2012 SAMPLES

 Testing-2013 Testing-2014 Testing-2015-16

 TPR FPR ACC W-FM TPR FPR ACC W-FM TPR FPR ACC W-FM

NB 0.908 0.201 0.840 0.842 0.799 0.564 0.546 0.555 0.828 0.797 0.460 0.410

J48 0.794 0.032 0.903 0.901 0.749 0.169 0.806 0.810 0.707 0.306 0.699 0.701

SVM 0.859 0.042 0.920 0.920 0.835 0.222 0.795 0.802 0.821 0.470 0.650 0.648

RF 0.874 0.022 0.939 0.939 0.706 0.144 0.811 0.812 0.667 0.310 0.680 0.682

SL 0.866 0.036 0.927 0.927 0.822 0.164 0.832 0.835 0.792 0.278 0.751 0.753

TABLE VIII. RESULTS FOR MODELS TRAINED WITH 2013 SAMPLES

 Testing-2014 Testing-2015-16

 TPR FPR ACC W-FM TPR FPR ACC W-FM

NB 0.746 0.498 0.576 0.590 0.716 0.774 0.427 0.395

J48 0.840 0.169 0.834 0.838 0.748 0.318 0.709 0.712

SVM 0.895 0.124 0.882 0.884 0.868 0.204 0.826 0.827

RF 0.858 0.161 0.845 0.849 0.801 0.293 0.746 0.748

SL 0.866 0.157 0.850 0.853 0.883 0.301 0.775 0.776

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2019), Oxford, United Kingdom, June 3-4, 2019

TABLE IX. RESULTS FOR MODELS TRAINED WITH 2012 SAMPLES, TESTED ON 6 MONTHLY PORTIONS OF THE DATASET

TABLE X. TOP TEN MOST OCCURRING FEATURES IN THE BENIGN SAMPLES FOR EACH DATASET (BY YEAR).

2012-benign 2013-benign 2014-benign 2015-16-benign

INTERNET INTERNET INTERNET INTERNET

WRITE_EXTERNAL_STORAGE WRITE_EXTERNAL_STORAGE getResources ACCESS_NETWORK_STATE

WAKE_LOCK ACCESS_NETWORK_STATE ACCESS_NETWORK_STATE getResources

READ_PHONE_STATE getResources IBinder Ljava/lang\Object.getClass

PHONE_STATE IBinder Ljava/lang/Object.getClass IBinder

getResources WAKE_LOCK io.File.exists io.File.exists

ACCESS_NETWORK_STATE RECEIVE_BOOT_COMPLETED Ljava.util.Date io.File.delete

IBinder PHONE_STATE io.File.delete Ljava.util.Date

intent.action.BOOT_COMPLETED READ_PHONE_STATE WRITE_EXTERNAL_STORAGE getInputStream

RECEIVE_BOOT_COMPLETED intent.action.BOOT_COMPLETED getInputStream Ljava/lang/Class.forName

TABLE XI. TOP TEN FEATURES WITH THE HIGHEST INFORMATION GAIN FOR EACH DATASET (BY YEAR).

2012 dataset 2013 dataset 2014 dataset 2015-16 dataset

TelephonyManager.getDeviceId TelephonyManager.getDeviceId SEND_SMS android.hardware

getAssets WifiManager READ_PHONE_STATE bindService

io.File.exists HttpUriRequest PHONE_STATE ServiceConnection

getResources getAssets TelephonyManager.getSubscriberId Ljava/lang/Class.getCanonicalName

HttpUriRequest getCacheDir getExtraInfo Ljava/lang/Class.cast

Ljava.util.Date getFilesDir TelephonyManager.getLine1Number Ljava/lang/Class.getMethods

getCacheDir Ljava/lang/Class.getField TelephonyManager.getDeviceId SEND_SMS

getInputStream FileOutputStream.write MOUNT_UNMOUNT_FILESYSTEMS READ_PHONE_STATE

.zip HttpPost.init getCellLocation PHONE_STATE

WifiManager Ljava/lang/Class.forName USER_PRESENT USER_PRESENT

 Testing-2013-first-half Testing-2013-second-half Testing-2014-first-half

 TPR FPR ACC W-FM TPR FPR ACC W-FM TPR FPR ACC W-FM

NB 0.920 0.239 0.866 0.864 0.897 0.191 0.830 0.840 0.838 0.407 0.660 0.678

J48 0.904 0.048 0.920 0.921 0.765 0.033 0.917 0.915 0.726 0.146 0.819 0.822

SVM 0.927 0.062 0.931 0.931 0.778 0.042 0.913 0.912 0.830 0.123 0.864 0.867

RF 0.927 0.053 0.934 0.934 0.814 0.021 0.938 0.937 0.811 0.103 0.873 0.875

SL 0.925 0.044 0.936 0.936 0.815 0.035 0.928 0.927 0.834 0.118 0.869 0.871

 Testing-2014-second-half Testing-2015-first-half Testing-2015-second-half

 TPR FPR ACC W-FM TPR FPR ACC W-FM TPR FPR ACC W-FM

NB 0.773 0.702 0.453 0.442 0.761 0.767 0.434 0.401 0.843 0.808 0.468 0.412

J48 0.585 0.204 0.728 0.728 0.512 0.218 0.679 0.674 0.659 0.240 0.717 0.717

SVM 0.836 0.302 0.743 0.751 0.743 0.401 0.654 0.658 0.825 0.487 0.645 0.641

RF 0.785 0.209 0.789 0.794 0.654 0.293 0.687 0.690 0.724 0.351 0.681 0.683

SL 0.812 0.184 0.815 0.819 0.749 0.209 0.775 0.776 0.823 0.249 0.782 0.783

