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Abstract—This paper presents a longitudinal study of the 

performance of machine learning classifiers for Android 

malware detection. The study is undertaken using features 

extracted from Android applications first seen between 2012 

and 2016. The aim is to investigate the extent of performance 

decay over time for various machine learning classifiers 

trained with static features extracted from date-labelled benign 

and malware application sets. Using date-labelled apps allows 

for true mimicking of zero-day testing, thus providing a more 

realistic view of performance than the conventional methods of 

evaluation that do not take date of appearance into account. In 

this study, all the investigated machine learning classifiers 

showed progressive diminishing performance when tested on 

sets of samples from a later time period. Overall, it was found 

that false positive rate (misclassifying benign samples as 

malicious) increased more substantially compared to the fall in 

True Positive rate (correct classification of malicious apps) 

when older models were tested on newer app samples. 
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I. INTRODUCTION  

Android is the leading mobile operating system 
worldwide with nearly 75% market share as at January 2019 
[1]. Its popularity, coupled with the availability of numerous 
third-party Android app distribution channels makes it a 
prime target for malware. It is estimated that more than 25 
million mobile malware samples have been seen in the wild 
as at September 2018 [2], and majority target the Android 
platform. With the increase in Android malware in recent 
years, substantial research effort has been directed towards 
machine learning based detection. Several works have 
proposed and investigated machine learning based Android 
malware detection based on dynamic and/or static features.  

Most of the existing studies on machine learning based 
malware detection have presented performance results using 
conventional methods that do not consider time periods or 
the age of the testing samples. Despite the proliferation of 
machine learning based malware detection research, there are 
hardly any studies that provide a comprehensive longitudinal 
view of performance. Hence, in this paper, a longitudinal 
performance analysis of machine learning based Android 
malware detectors is presented.  The aim of the study is to 
investigate the extent of performance decay over time for 
various machine learning classifiers trained with features 
extracted from date-labelled benign and malware samples. 
The classifiers are then tested on benign and malware 
samples from a later time period, thus mimicking true zero-
day scenario that gives a more realistic view of performance 
than traditional evaluation approach. The classifiers studied 
include Naïve Bayes (NB), Support Vector Machines 
(SVM), Random Forest (RF), J48 Decision Tree and Simple 

Logistic (SL). These have been trained using 350 features 
obtained from static based analysis of each of the apps in the 
corpora. The apps used in the experiments are date-stamped 
between February 2012 and January 2016, i.e. the time they 
first appeared.  

The rest of the paper is organized as follows: Section II 
discusses related work, while Section III presents 
methodology and the experiments performed. Section IV 
presents the results and discussion of results and Section V is 
the conclusion and future work.  

II. RELATED WORK  

As mentioned earlier, several works exist that focus on 
machine learning based detection of Android malware. They 
can be categorized mainly into static feature-based and 
dynamic feature-based. A third category combines the two 
into a hybrid approach.  

In [3], an iterative classifier fusion system is developed 
for the detection of Android malware, based on hybrid static 
and dynamic features including permissions, dalvik opcodes, 
control-flow graph (CFG) and call graph. Their approach 
uses a general-purpose meta-procedure to iteratively select 
features for a given base classifier within the multi-tier 
iterative classifier fusion system (ICFS). The paper used the 
well-known MalGenome dataset (consisting of malware 
samples collected between 2011 and 2012). Although, their 
results compared ICFS outcome to those from traditional 
classifiers using stratified 10-fold cross validation, the paper 
did not present a longitudinal view of the system’s 
performance. 

DroidFusion [4] is a novel classifier fusion approach for 
Android malware detection which was evaluated on static 
features i.e. permissions, API calls, intents, commands, and 
other static app properties. The system applies a set of 
ranking-based algorithms to combine base classifiers in order 
to improve the overall prediction accuracy. Experiments 
were performed using samples from MalGenome, Drebin 
[24], and McAfee datasets to evaluate the system. In the 
paper, conventional stratified 10-fold cross validation as well 
training/validation/testing ratio were used to evaluate 
performance with no longitudinal performance results on 
time-labelled samples presented.  

PIndroid [5] is a permissions and intents based 
framework for identifying malware apps. It uses a 
combination of permissions and intents coupled with 
ensemble learning methods to detect malware. Evaluation is 
based on conventional 10-fold cross-validation and 80:20 
training/testing ratio. The reported accuracy in the paper is 
99.8% when tested on 1,745 apps. DroidSieve [6] is an 
Android malware classifier based on static analysis that is 
designed to be fast, accurate and resilient to obfuscation. It 
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exploits obfuscation-invariant features and artefacts 
introduced by obfuscation mechanisms used in malware. 
DroidSieve achieved up to 99.82% accuracy for malware 
detection and 99.26% accuracy for family identification 
when tested on over 100K malware and benign apps. W. 
Wang et al. [7] presented a system for detecting Android 
malware and categorization of benign apps using ensemble 
of classifiers. They employed 11 different types of static 
features including requested permissions, filtered intents, 
suspicious API calls, hardware features, code-related 
information etc. The ensembled base classifiers include 
Naïve Bayes, Random Forest, SVM, KNN, and CART. The 
system was tested on 116,028 app samples achieving 99.39% 
detection accuracy. Paper [8] also considered an ensemble of 
various classifiers but experimented on a more limited 
number of samples to obtain 95.6% accuracy with the best 
ensemble model.   

DroidEnsemble [9] also utilizes static features like 
permissions, hardware features, filtered intents, restricted 
API calls, used permissions, code patterns and function call 
graphs with an ensemble of SVM, KNN and Random Forest.  
It was evaluated on 1386 benign apps and 1296 malapps 
achieving a detection accuracy of up to 98.4%.  Some papers 
such as [10], [11], [12], [29] and [30], employ static analysis-
based opcode features with machine learning for Android 
malware detection. Other papers utilize tools such as 
Droidbox [13] or Dynalog [14] to extract dynamic features 
[15] for training machine learning based classifiers. Papers 
[16]-[21] also present dynamic analysis-based work for 
Android malware detection, while [22], [23], [31] and [32] 
use both static and dynamic features.  

In all of these existing Android malware detection 
research papers, long term performance and longitudinal 
resilience is not investigated. The authors of [27] evaluated 
their ensemble learning based malware detection system 
called EnDroid on testing samples that were from a distinct 
time period from the training samples; however, their work 
was not an extensive longitudinal evaluation. The work only 
used 5K benign samples covering a few months (January 
2017 to March 2017) and 5K malware samples considered to 
be post-2015 from AndroZoo for validation (testing). The 
training samples used consisted of 5213 malware apps from 
the Drebin dataset (considered to be pre-2015) coupled with 
8806 benign apps dated April 2016 to Sept. 2016. Their 
experiments were intended to validate the performance of 
EnDroid rather than present a timeline analysis of 
performance. In [33], a framework called Transcend is 
proposed for detecting the onset of performance decay i.e. 
concept drift in machine learning based malware 
classification models. Transcend is designed to detect aging 
classification models in vivo during deployment by using a 
statistical comparison of samples seen during deployment 
with those used to train the model. It then raises a red flag 
before the model starts making consistently poor decisions 
due to out-of-date training. Unlike Transcend, this paper 
does not aim to provide a detection solution for concept drift 
but focuses on investigating the extent of drift for Android 
malware detection models using time-labelled samples from 
2012 to 2016.   

  A possible reason for the scarcity of longitudinal 
performance studies in the current literature could be lack of 
access to suitable time-labelled datasets. Nevertheless, due 
to the evolution of malicious apps, evaluating the 

performance over time is important to gain a realistic 
outlook on the systems being designed for their detection. 
The study in our paper therefore presents a complementary 
view to the current results published in the literature, by 
focusing on the longitudinal performance of the machine 
learning based Android malware detection. 

III. METHODOLOGY AND EXPERIMENTS 

A. Datasets 

For the purpose of our study, datasets were created from 
a set of benign and malware apps that were each labelled by 
their hash value and date seen. The dates ranged from 14th 
February 2012 to 16th January 2016. This initial set of 
36,183 applications contained 13,805 malware apps and 
22,378 benign (clean) applications from McAfee (Intel 
Security) and have been utilized in our previous work [4]. 
The apps were processed using a bespoke APK analysis tool 
developed in Python to extract static features. This resulted 
in a feature dataset that was sorted out according to the dates 
and then separated into four groups consisting of data for 
apps from 2012, 2013, 2014 and 2015-2016 respectively. 
These feature datasets were used to train the machine 
learning classifiers which were subsequently evaluated in 
line with the objective of this study. The numbers of the 
malware and benign apps represented in the feature dataset 
for each year are shown in Table I. It was decided to merge 
the 2016 data with the 2015 data because of the relatively 
small size of the 2016 samples (since only January 2016 apps 
were present in the collection). Moreover, the apps from the 
2015-2016 date range were intended solely to be used for 
testing during the experiments. For this reason, merging the 
2015 and 2016 samples would not defeat the aim of the 
study.  

TABLE I.   DATASET STATISTICS. NUMBER OF SAMPLES OF EACH 

CLASS REPRESENTED IN THE FEATURE DATASET USED FOR THE 

EXPERIMENTS. 

      2012 2013    2014 2015-2016 

Malware 512 

(24.2%) 

1959 

   (37.4%) 

   1491 

(30.2%) 

     9843 

   (41.2%) 

Benign     1601 

 (75.8%) 

 

3272 

   (62.6%) 

   3448 

(69.8%) 

     14057 

  (58.8%) 

Total       2113 5231    4939      23900 

B. Application features extraction 

The features used to create the training and testing sets 
were obtained from the apps through the bespoke APK 
analysis tool mentioned earlier. The tool enables automated 
feature extraction from Android apps. It is capable of 
extracting permissions and intents from the APK manifest 
file as well as API calls from the dex file (through automated 
reverse engineering). In addition, the tool enables us to check 
for the presence of embedded .dex, .jar, .zip, .so and .exe 
files (or files of any extension) within the APK. Furthermore, 
code from system libraries and third-party ad libraries were 
filtered out during the feature extraction process using a list 
of commonly used ad libraries from [25]. An overview of the 
utilised feature extraction process can be found in [4].  
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In total, 350 features were extracted from the apps, and 
these consisted of API calls, permissions, intents, and other 
attributes (e.g. command strings, presence of embedded 
executables etc.). All 350 features are present in the feature 
datasets that were used in the experiments presented in this 
paper. Table II shows a partial list of the extracted features; 
the full list is available at [26]. The 350 features provided the 
input vectors that are used to represent each app in the 
feature datasets. The datasets are organized into a matrix of 
input vectors saved in .csv files for training the machine 
learning classifiers. Each app is represented as a row of 
feature vectors, with each column of the vector 
corresponding to a given feature and represented by a ‘1’ if 
present or a ‘0’ if absent from the app. The last column 
carries the class label of ‘malware’ or ‘benign’. 

TABLE II.  A SUBSET OF THE STATIC FEATURES EXTRACTED FROM THE 

APPS USING THE PYTHON-BASED AUTOMATED STATIC ANALYSIS TOOL. 
FULL LIST OF FEATURES IS AVAILABLE AT [26]. 

Features Category 

Ljava/util/Timer.schedule Utilities API 

READ  PHONE STATE Permission 

getDeviceId (TelephonyManager) Framework res. API 

Ljava/net/URL.openStream System res. API 

Ljava/io/FileOutputStream.write System res. API 

Class.getClassLoader DVM res. API 

Ljava/lang/System.loadLibrary DVM res. API 

intent.action.SMS RECEIVED Intent 

SEND SMS Permission 

getConnectionInfo (WifiManager) System res. API 

getSubscriberId (TelephonyManager) Framework res. API 

intent.action.PHONE STATE Intent 

getWifiState (WifiManager) System res. API 

intent.action.SEND Intent 

Ljava/io/File.mkdir System res. API 

.open (AssetManager) Framework res. API 

chown Command string 

RECEIVE SMS Permission 

Ljava/lang/Runtime.exec DVM res. API 

.read (ZipInputStream) Utilities API 

C. Machine learning classifires and evaluation metrics 

The machine learning classifiers evaluated in the 
longitudinal performance study include Naïve Bayes (NB), 
Simple Logistic (SL), Random Forest (RF), Support Vector 
Machine (SVM), and J48 Decision Tree.  For the evaluation, 
four metrics are considered: True Positive Rate (TPR), False 
Positive Rate (FPR), Overall accuracy (ACC) and Weighted 
F-measure (W-FM) [4]. TPR represents the rate of correct 
classification of the malicious applications, while FPR 
represents the rate of misclassification of the clean (benign) 
applications. 

IV.  RESULTS AND DISSCUSSIONS 

In this section, the results of the experiments undertaken 
to analyse the longitudinal performance of the machine 
learning classifiers are presented. The discussion of results 

will be split into three subsections. Each subsection will 
focus on evaluating machine learning models trained using 
the feature dataset of samples from 2012, 2013, and 2014 
respectively.  

A. Experiment 1: Analysis of models trained with 2012 

samples 

In this subsection, the results of experiments on machine 
learning detectors trained with 2012 data is presented. In 
order to examine the longitudinal performance, these models 
are evaluated on the 2013, 2014 and 2015-2016 datasets 
described in section III-A. The 2012 models were trained 
with the available 512 malware and 1061 clean samples’ 
feature datasets (Table I). 

From Fig. 1, it can be noted that the overall classification 
accuracy decreases for all the classifiers when tested on 
2013, 2014, and 2015-16 datasets respectively. Table III 
shows the numerical results; full results including TPR, FPR 
and W-FM can be seen in the Appendix (Tables VI and VII). 
NB classification accuracy decreased from 84% (2013) to 
54% (2014) and then down to 46% (2015-16). J48 went from 
90.3% on 2013 data, to 80.6% on 2014 data, and down to 
69.9% on 2015-2016 data. For SVM (linear) it was 92% 
(2013), 79.5% (2014) and 65% (2015-16) respectively. RF 
had 93.9% (2013), 81.1% (2014), and 68% (2015-16). SL 
started with 92.7% (2013) then dropped to 83.2% (2014) and 
75.1% (2015-2016).  

If we imagine that this scenario emulates a zero-day 
situation where emerging apps were tested as they appear, 
then RF experienced a 28% decline in overall accuracy over 
the time period 2013 to 2016. SL can be said to have 
declined by 19% in overall accuracy over the same time 
period. The lines in Fig. 1 illustrate clearly the drop in the 
accuracy exhibited by all the 2012 trained models.  
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Fig. 1: Average accuracy of models trained on the 2012 samples 
and evaluated on the 2013, 2014 and 2015-2016 samples 
respectively. 

TABLE III.  AVERAGE ACCURACY (2012 TRAINING) 

 T-2013 T-2014 T-2015-16 

NB 0.840 0.546 0.460 

J48 0.903 0.806 0.699 

SVM 0.920 0.795 0.650 

RF 0.939 0.811 0.680 

SL 0.927 0.832 0.751 
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In Fig. 2, the TPR results for all the machine learning 
classifiers are depicted for the training on 2012 data. 
Although there are performance drops as the models are 
tested on 2013, 2014 and 2015-16 data, it is to a lesser 
degree than the progressive rise in FPR shown in Fig. 3 
(numerical results are in the Appendix). This implies that the 
drop in overall accuracy of the models are impacted more by 
the misclassification of clean apps than the misclassification 
of malware apps. 
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Fig. 2: True Positive Rate (malware detection rate) of models 
trained on the 2012 samples and tested on the 2013, 2014 and 2015-
2016 samples respectively. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NB J48 SVM RF SL

FPR for different time peroids (2012 training)

T-2013 T-2014 T-2015-16

 

Fig. 3: False Positive Rate (benign misclassification rate) of models 
trained on the 2012 samples and tested on the 2013, 2014 and 2015-
2016 samples respectively. 
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Fig. 4: Average accuracy of models trained on the 2012 samples 
and evaluated on six-monthly portions of the 2013, 2014 and 2015-
2016 samples respectively. 

TABLE IV.   DATASET STATISTICS. NUMBER OF SAMPLES OF EACH 

CLASS REPRESENTED IN THE FEATURE DATASET USED FOR THE SIX-
MONTHLY EXPERIMENTS. 

 Malware Benign Total 

2013-FH 1078 566 1644 

2013-SH 881 2706 3587 

2014-FH 613 1628 2241 

2014-SH 878 1820 2698 

2015-FH 2407 3928 6335 

2015-SH 
(plus Jan 2016) 

7436 10129 17565 

 

In Fig. 4, a more granular average accuracy result is 
presented. This is obtained from splitting the testing samples 
from each year into two i.e. first half (FH) and second half 
(SH) to give an approximately six-monthly view of 
longitudinal performance. The numbers of malware and 
benign samples in each yearly split are shown in Table IV, 
and the full results obtained from testing the 2012 models on 
the six-monthly test sets are shown in Table IX in the 
appendix. As expected, the performance diminishes more 
gently on the six-monthly split compared to the previous 
yearly results. Also, the same trend of more rapid FPR rise 
compared to TPR decline can be noticed with the six-
monthly split results (see Table IX).  

B. Experiment 2: Analysis of models trained with 2013 

samples 

Here, the results of experiments on machine learning 
detectors trained with 2013 data (1959 malware and 3272 
benign) is presented. In order to examine the longitudinal 
performance, these models are evaluated on the 2014 dataset 
and 2015-2016 datasets respectively. As was the case with 
the 2012 models, there is a degradation in overall accuracy 
during the second testing time period for all classifiers. This 
can be seen in Table V and Fig. 5. For both time periods, the 
2013 SVM model had the highest overall accuracy but also 
suffered the least loss.   

As was the case with the 2012 models, the 
misclassification of benign applications (see FPR in Fig. 7) 
contributed more to the overall loss in accuracy compared to 
the malware misclassification (see TPR in Fig. 6). For 
example, with the SL model, initial misclassification rate 
was ~13% for malware and ~16% for benign. In the second 
time period, misclassification rates for SL were ~12% for 
malware and ~30% for benign (see Table VIII in the 
appendix for the numerical results).  

TABLE V.  AVERAGE ACCURACY (2013 TRAINING) 

 T-2014 T-2015-16 

NB 0.576 0.427 

J48 0.834 0.709 

SVM 0.882 0.826 

RF 0.845 0.746 

SL 0.850 0.775 
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Fig. 5: Average accuracy of models trained on the 2013 samples 
and tested on the 2014 and 2015-2016 samples respectively. 
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Fig. 6: True Positive Rate (malware detection rate) of models 
trained on the 2013 samples and tested on the 2014 and 2015-2016 
samples respectively. 
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Fig. 7: False Positive Rate (benign misclassification rate) of models 
trained on the 2013 samples and tested on the 2014 and 2015-2016 
samples respectively. 

C. Experiment 3: Analysis of models trained with 2014 

samples 

In this section the results of experiments on machine 
learning detectors trained with 2014 data (1491 malware and 
3448 benign) is presented. In order to examine the 
longitudinal performance, these models are evaluated on the 
2015-2016 dataset only.  Table VI shows the results of the 
2014-trained models depicting accuracy, TPR, FPR and W-
FM. The SL classifier has the highest overall accuracy, 
slightly better than RF. The RF classifier had the lower FPR 
compared to SL (see Table VI). 

TABLE VI.   RESULTS FOR MODELS TRAINED WITH 2014 SAMPLES: 
ACCURACY, TPR, FPR AND W-FM 

Testing 2015-16 

 ACC TPR FPR W-FM 

   NB 0.758 0.777 0.256 0.759 

J48 0.812 0.698 0.108 0.809 

SVM 0.872 0.818 0.090 0.872 

RF 0.897 0.805 0.039 0.895 

SL 0.910 0.871 0.063 0.909 

 

In order to gain a longitudinal performance view, we will 
compare the results of the 2014 models to the earlier results 
of testing the 2012 and 2013 models on the 2015-16 data. 
Comparison graphs are depicted in Figs. 8, 9 and 10. 

We can see that the overall accuracy of 2014 models 
were higher for all the classifiers. Although one can argue 
that there were more samples in the 2014 dataset than in the 
2012 dataset for model training, the 2013 dataset contains 
more training examples than the 2014 dataset. This implies 
that the (time) proximity of the 2014 training samples to the 
(2015-2016) testing set is the more likely contributing factor 
to better performance. It is worth noting that the 2013 dataset 
had 468 more malware samples than the 2014 dataset. This 
may account for better TPR results for SVM trained with the 
2013 compared to when trained with 2014 data. Those of SL 
and J48 were slightly better for 2013 compared to 2014 as 
well (Fig. 9). Fig. 10 shows that FPR were lowest for 2014 
trained models. These results (in Figs. 9 and 10) again 
highlight that the performance on the benign samples 
account for more of the loss in overall accuracy (in Fig. 8). 

One factor that may contribute to the diminishing 
performance is the feature set used in training the machine 
learning algortihms. Over time, some of the features could 
become less discriminative for the following reasons: (a) 
more sophisicated evasive techniques appearing more 
frequently in the malware apps thus making it problematic to 
extract some features that were previously common. (b) the 
evolution of the benign apps as more programmers use 
newer and advanced features, which when used as indicators 
could trigger more false positives.  
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Fig. 8: Overall accuracy of 2012, 2013 and 2014 models when 
tested on 2015-2016 samples. 
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Fig. 9: True positive rate of 2012, 2013 and 2014 models when 
tested on 2015-2016 samples. 
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Fig. 10: False positive rate of 2012, 2013 and 2014 models when 
tested on 2015-2016 samples. 

The top 10 most occuring features in the benign samples 
within each dataset (by year) are shown in Table X in the 
Appendix. From the table, it can be observed that different 
features appear in the top 10 for each year’s set. The 2012 
top 10 benign features were dominated by permissions i.e. 
INTERNET, WRITE_EXTERNAL_STRORAGE, WAKE 
LOCK, READ PHONE STATE, ACCESS NETWORK 
STATE  and RECEIVE BOOT COMPLETED. For 2013, 
the same top 10 is maintained but in a different order. The 
2014 dataset however, is dominated by API function calls 
with only 3 permissions present. For the 2015-16 set, only 2 
permisisons remain in the top 10 for benign class. The 
variation in the features shown in Table X indicates that the 
benign apps are being characterized differently over time by 
the features utilized in this study, which could be due to the 
changes in the way the newer benign apps were being 
programed. 

Table XI shows the top 10 features with the highest 
information gain for each of the datasets. The information 
gain [28] calculates the relevance of a feature or the 
information provided by a feature using entropy. The total 
information gain of the top 10 for each dataset are as follows: 
2012 = 2.134; 2013 = 3.379; 2014 = 1.047; 2015-16 = 1.907. 
This confirms that the predictive power of the features 
diminished over time since the total information gain present 
in the top features was reduced. Note also that the top 
features in the newer datasets were different from those in 
the older ones. Which means that features that were 
previously discriminative lost some of their predictive power 

in the later time peroids. Therefore, it becomes apparent that 
in addition to peroidic re-training with newer samples,  
further measures that can be applied to mitigate the loss of 
the features’ predictive power will ultimately contribute to 
reducing the diminishing performance over time.  

V. CONCLUSION AND FUTURE WORK  

As more samples become available, it is expected that the 
models used in the detection of Android malware will be 
retrained to improve their performance. However, a 
longitudinal view of performance can give better insight into 
the robustness of the models. It can also inform the re-
training strategy to be adopted. This particular study shows 
that based on the static features used for the training, the 
machine learning models become much less accurate in 
recognizing benign samples over time. Future work may 
investigate whether a different set of features such as 
opcodes could show better longitudinal resilience. Future 
work would also focus on developing schemes and 
techniques to mitigate the diminishing  performance of the 
machine learning based malware detectors.  
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Appendix 
 

TABLE VII.   RESULTS FOR MODELS TRAINED WITH 2012 SAMPLES  

 Testing-2013 Testing-2014 Testing-2015-16 

 TPR FPR ACC W-FM TPR FPR ACC W-FM TPR FPR ACC W-FM 

NB 0.908 0.201 0.840 0.842 0.799 0.564 0.546 0.555 0.828 0.797 0.460 0.410 

J48 0.794 0.032 0.903 0.901 0.749 0.169 0.806 0.810 0.707 0.306 0.699 0.701 

SVM 0.859 0.042 0.920 0.920 0.835 0.222 0.795 0.802 0.821 0.470 0.650 0.648 

RF 0.874 0.022 0.939 0.939 0.706 0.144 0.811 0.812 0.667 0.310 0.680 0.682 

SL 0.866 0.036 0.927 0.927 0.822 0.164 0.832 0.835 0.792 0.278 0.751 0.753 

 

 

TABLE VIII.   RESULTS FOR MODELS TRAINED WITH 2013 SAMPLES  

 Testing-2014 Testing-2015-16 

 TPR FPR ACC W-FM TPR FPR ACC W-FM 

NB 0.746 0.498 0.576 0.590 0.716 0.774 0.427 0.395 

J48 0.840 0.169 0.834 0.838 0.748 0.318 0.709 0.712 

SVM 0.895 0.124 0.882 0.884 0.868 0.204 0.826 0.827 

RF 0.858 0.161 0.845 0.849 0.801 0.293 0.746 0.748 

SL 0.866 0.157 0.850 0.853 0.883 0.301 0.775 0.776 
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TABLE IX.  RESULTS FOR MODELS TRAINED WITH 2012 SAMPLES, TESTED ON 6 MONTHLY PORTIONS OF THE DATASET 

 

 

 

TABLE X.  TOP TEN MOST OCCURRING FEATURES IN THE BENIGN SAMPLES FOR EACH DATASET (BY YEAR). 

2012-benign 2013-benign 2014-benign 2015-16-benign 

INTERNET INTERNET INTERNET INTERNET 

WRITE_EXTERNAL_STORAGE WRITE_EXTERNAL_STORAGE getResources ACCESS_NETWORK_STATE 

WAKE_LOCK ACCESS_NETWORK_STATE ACCESS_NETWORK_STATE getResources 

READ_PHONE_STATE getResources IBinder Ljava/lang\Object.getClass 

PHONE_STATE IBinder Ljava/lang/Object.getClass IBinder 

getResources WAKE_LOCK io.File.exists io.File.exists 

ACCESS_NETWORK_STATE RECEIVE_BOOT_COMPLETED Ljava.util.Date io.File.delete 

IBinder PHONE_STATE io.File.delete Ljava.util.Date 

intent.action.BOOT_COMPLETED READ_PHONE_STATE WRITE_EXTERNAL_STORAGE getInputStream 

RECEIVE_BOOT_COMPLETED intent.action.BOOT_COMPLETED getInputStream Ljava/lang/Class.forName 

 

 

 

TABLE XI.  TOP TEN FEATURES WITH THE HIGHEST INFORMATION GAIN FOR EACH DATASET (BY YEAR). 

2012 dataset 2013 dataset 2014 dataset 2015-16 dataset  

TelephonyManager.getDeviceId TelephonyManager.getDeviceId SEND_SMS android.hardware 

getAssets WifiManager READ_PHONE_STATE bindService 

io.File.exists HttpUriRequest PHONE_STATE ServiceConnection 

getResources getAssets TelephonyManager.getSubscriberId Ljava/lang/Class.getCanonicalName 

HttpUriRequest getCacheDir getExtraInfo Ljava/lang/Class.cast 

Ljava.util.Date getFilesDir TelephonyManager.getLine1Number Ljava/lang/Class.getMethods 

getCacheDir Ljava/lang/Class.getField TelephonyManager.getDeviceId SEND_SMS 

getInputStream FileOutputStream.write MOUNT_UNMOUNT_FILESYSTEMS READ_PHONE_STATE 

.zip HttpPost.init getCellLocation PHONE_STATE 

WifiManager Ljava/lang/Class.forName USER_PRESENT USER_PRESENT 

 
 

 

 

 

 Testing-2013-first-half Testing-2013-second-half Testing-2014-first-half 

 TPR FPR ACC W-FM TPR FPR ACC W-FM TPR FPR ACC W-FM 

NB 0.920 0.239 0.866 0.864 0.897 0.191 0.830 0.840 0.838 0.407 0.660 0.678 

J48 0.904 0.048 0.920 0.921 0.765 0.033 0.917 0.915 0.726 0.146 0.819 0.822 

SVM 0.927 0.062 0.931 0.931 0.778 0.042 0.913 0.912 0.830 0.123 0.864 0.867 

RF 0.927 0.053 0.934 0.934 0.814 0.021 0.938 0.937 0.811 0.103 0.873 0.875 

SL 0.925 0.044 0.936 0.936 0.815 0.035 0.928 0.927 0.834 0.118 0.869 0.871 

 

 Testing-2014-second-half Testing-2015-first-half Testing-2015-second-half 

 TPR FPR ACC W-FM TPR FPR ACC W-FM TPR FPR ACC W-FM 

NB 0.773 0.702 0.453 0.442 0.761 0.767 0.434 0.401 0.843 0.808 0.468 0.412 

J48 0.585 0.204 0.728 0.728 0.512 0.218 0.679 0.674 0.659 0.240 0.717 0.717 

SVM 0.836 0.302 0.743 0.751 0.743 0.401 0.654 0.658 0.825 0.487 0.645 0.641 

RF 0.785 0.209 0.789 0.794 0.654 0.293 0.687 0.690 0.724 0.351 0.681 0.683 

SL 0.812 0.184 0.815 0.819 0.749 0.209 0.775 0.776 0.823 0.249 0.782 0.783 


