228 research outputs found

    Soergel calculus

    No full text

    Enumeration of words by the sum of differences between adjacent letters

    Get PDF
    Combinatoric

    Real-time and distributed applications for dictionary-based data compression

    Get PDF
    The greedy approach to dictionary-based static text compression can be executed by a finite state machine. When it is applied in parallel to different blocks of data independently, there is no lack of robustness even on standard large scale distributed systems with input files of arbitrary size. Beyond standard large scale, a negative effect on the compression effectiveness is caused by the very small size of the data blocks. A robust approach for extreme distributed systems is presented in this paper, where this problem is fixed by overlapping adjacent blocks and preprocessing the neighborhoods of the boundaries. Moreover, we introduce the notion of pseudo-prefix dictionary, which allows optimal compression by means of a real-time semi-greedy procedure and a slight improvement on the compression ratio obtained by the distributed implementations

    CLUSS: Clustering of protein sequences based on a new similarity measure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid burgeoning of available protein data makes the use of clustering within families of proteins increasingly important. The challenge is to identify subfamilies of evolutionarily related sequences. This identification reveals phylogenetic relationships, which provide prior knowledge to help researchers understand biological phenomena. A good evolutionary model is essential to achieve a clustering that reflects the biological reality, and an accurate estimate of protein sequence similarity is crucial to the building of such a model. Most existing algorithms estimate this similarity using techniques that are not necessarily biologically plausible, especially for hard-to-align sequences such as proteins with different domain structures, which cause many difficulties for the alignment-dependent algorithms. In this paper, we propose a novel similarity measure based on matching amino acid subsequences. This measure, named SMS for Substitution Matching Similarity, is especially designed for application to non-aligned protein sequences. It allows us to develop a new alignment-free algorithm, named CLUSS, for clustering protein families. To the best of our knowledge, this is the first alignment-free algorithm for clustering protein sequences. Unlike other clustering algorithms, CLUSS is effective on both alignable and non-alignable protein families. In the rest of the paper, we use the term "<it>phylogenetic</it>" in the sense of "<it>relatedness of biological functions</it>".</p> <p>Results</p> <p>To show the effectiveness of CLUSS, we performed an extensive clustering on COG database. To demonstrate its ability to deal with hard-to-align sequences, we tested it on the GH2 family. In addition, we carried out experimental comparisons of CLUSS with a variety of mainstream algorithms. These comparisons were made on hard-to-align and easy-to-align protein sequences. The results of these experiments show the superiority of CLUSS in yielding clusters of proteins with similar functional activity.</p> <p>Conclusion</p> <p>We have developed an effective method and tool for clustering protein sequences to meet the needs of biologists in terms of phylogenetic analysis and prediction of biological functions. Compared to existing clustering methods, CLUSS more accurately highlights the functional characteristics of the clustered families. It provides biologists with a new and plausible instrument for the analysis of protein sequences, especially those that cause problems for the alignment-dependent algorithms.</p
    corecore