1,213 research outputs found

    Safety Relevant Positioning Applications in Rail Traffic using the European Satellite System "Galileo"

    Get PDF
    Die Ortung im Eisenbahnverkehr hat eine hohe sicherheitstechnische Relevanz. Eine falsch detektierte Position eines Fahrzeugs kann zu einer erheblichen Gefährdung führen, da die ermittelte Ortsinformation für die Freigabe und das Wiederbesetzen von Gleisabschnitten genutzt wird. Daraus abgeleitet, müssen Ortungssysteme bei der Zulassung unter anderem die folgenden sicherheitskritischen Anforderungen erfüllen Genauigkeit, Zuverlässigkeit, Integrität und Verfügbarkeit der Ortungsinformation, die gemäß SIL 4 nachzuweisen sind

    A Novel Communication and Radar System for Underground Railway Applications

    Get PDF
    A system allowing data to be exchanged between two successive trains in a tunnel, while simultaneously measuring the distance between them, would help to optimize train traffic in very long tunnels, without lowering safety standards. A study including both theoretical and experimental phases was conducted to design and optimize such a system and focused on the Channel Tunnel, between France and England, where a minimum range of 5 km is necessary for operational use. A prototype, operating at 2.45 GHz and based on this new concept, produced successful results. Given that this technique would also be useful in any underground rail system, particularly those that are automated, the prototype was also tested on subway lines, in Lille and Paris

    Anti-collision systems in tunneling to improve effectiveness and safety in a system-quality approach: A review of the state of the art

    Get PDF
    Tunnelling and underground construction operations are often characterized by critical safety issues mainly due to poor visibility and blind spots around large vehicles and equipment. This can lead to collisions between vehicles or between vehicles and pedestrians or structural elements, causing accidents and fatalities. To improve the OS&H conditions, it is important to investigate the possible introduction of innovative techniques and technologies to reduce the occurrences and consequences of shared spaces (spaces used by both vehicles and pedestrians). For this reason, research was conducted to investigate the possible use of different technologies of anti-collision systems in tunnelling operations. First, to achieve this goal, an extensive review of the literature was carried out in accordance with the PRISMA statement to select the current techniques and technologies used by general anti-collision systems in civil and mining construction sites. Then, the operating principles, the relative advantages and disadvantages, combinations, and costs were examined for each of these. Eight types of systems and many examples of applications of anti-collision systems in underground environments were identified as a result of the analysis of the literature. Generally, it was noted that the anti-collision techniques available have found limited application in the excavation sites of underground civil works up to the present day, though the improvement in terms of safety and efficiency would be considerable

    Monitoring geotechnical structures by ground based radar interferometry

    Get PDF
    This paper describes two novel remote sensing techniques based on radar sensors, respectively the Synthetic Aperture Radar (SAR) and the Real Aperture Radar (RAR), and some applications to relevant geotechnical problems with the aim to demonstrate the outcomes these types of sensors can provide. The case studies here described show how the SAR technique can provide useful information to interpret landslides’ kinematics and how the RAR can be used to monitor dam displacements and tunnels’ convergences

    UWB Radio Wireless Communication System Design for Railway Tunnels

    Get PDF
    Railway is an economical and comfortable mode of transportation for long distances. Safety, reliability and good quality of service are the main concern of railway industries which are maintained by railway management and communication system. There are several existing management systems like CCCS, ATCS, PTC and many more. With increasing population, demand for railway services also increases. To full fill these demands railway infrastructure has been developing continuously. By implementing latest technologies for railway communication we can make railway transportation safer, efficient, and more accessible. Ultra wideband radio communication system is amongst those very latest and rapidly growing technologies. This research work focuses on the study of UWB radio based wireless communication system for railway tunnels, whose main task is to maintain an uninterrupted data transmission between train driver to wayside controller

    Towards Long-Term Monitoring of the Structural Health of Deep Rock Tunnels with Remote Sensing Techniques

    Get PDF
    Due to the substantial need to continuously ensure safe excavations and sustainable operation of deep engineering structures, structural health monitoring based on remote sensing techniques has become a prominent research topic in this field. Indeed, throughout their lifetime, deep tunnels are usually exposed to many complex situations which inevitably affect their structural health. Therefore, appropriate and effective monitoring systems are required to provide real-time information that can be used as a true basis for efficient and timely decision-making. Since sensors are at the heart of any monitoring system, their selection and conception for deep rock tunnels necessitates special attention. This work identifies and describes relevant structural health problems of deep rock tunnels and the applicability of sensors employed in monitoring systems, based on in-depth searches performed on pertinent research. The outcomes and challenges of monitoring are discussed as well. Results show that over time, deep rock tunnels suffer several typical structural diseases namely degradation of the excavation damaged areas, corrosion of rock bolts and cable bolts, cracks, fractures and strains in secondary lining, groundwater leaks in secondary lining, convergence deformation and damage provoked by the triggering of fires. Various types of remote sensors are deployed to monitor such diseases. For deep rock tunnels, it is suggested to adopt comprehensive monitoring systems with adaptive and robust sensors for their reliable and long-lasting performance
    corecore