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Abstract

The control of structural condition of civil infrastructure facilities, such as bridges

and tunnels, is crucial to ensure safety and to shun grave waste of economic resources.

The consequences of their degradation could have a substantial impact given the

crucial role that them play in the nowadays society. The development of Structural

Health Monitoring (SHM) strategies, aimed at identifying, localizing, and estimating

the severity of potential damages for a successful decision-making process in infras-

tructures maintenance management, has become a research topic in the last twenty

years. Significant resources have been allocated, mainly in developed countries,

where the infrastructure assets are composed of facilities nearing the end of their

useful life and, as a result, require more attention due to aging. Nowadays, advanced

studies, exploiting even highly sophisticated artificial intelligence algorithms, have

been carried out to structural conditions assessment. However, many issues need to

be still addressed due to the difficulty of integrating expertise from many engineering

sectors and achieving rigorous validation methodologies on real-world case studies.

This thesis aims at designing and validating methodologies for the control of

large-scale infrastructures, considering the features and issues of the typology to

which they belong, to obtain reliable information about the current structural state

and predict its evolution.

Several methodologies have been devised based on infrastructural typology,

construction material, and static scheme. Such features are directly related to the

structural response and to specific issues that need customized strategies to be

successfully coped. The analyses, involving both numerical simulations and real

case studies, have been based on several data types (e.g., static and/or dynamic

parameters, images) and different monitoring typologies (i.e., continuous or periodic

monitoring). In detail, customized strategies have been drawn for highway tunnels

and for bridges belonging to three service classes (highway, railway, and pedestrian).



v

As regard the tunnel, a multi-level assessment strategy has been proposed. It

exploits the high capacity of Convolutional Neural Networks (CNNs) to classify

potential damages. Ground Penetrating Radar (GPR) profiles and the associated

structural phenomena have been used as input and output to train and test such

networks. Image-based analysis and integrative investigations have been leveraged to

define the structural conditions linked to GPR profiles and to generate the database.

The degree of detail and attained accuracy are high. As a result, this method is

useful to reduce the amount and invasiveness of testing, as well as the time and cost

associated with highly qualified technicians.

As regard the bridges, unsupervised and supervised approaches have been applied.

As concerns the structural condition assessment of an arch highway steel bridge,

methodologies mainly based on dynamic behavior have been devised and a clustering

based approach has been proposed as artificial intelligence (AI) support. On the

other hand, plans for control of simply supported prestressed concrete railway

bridges have been drawn up by means of two anomaly detection methodologies

developed to be complementary and economically sustainable. The first, designed for

a continuous control over time, is based on regression correlation models exploting

supervised algorithm; the second, devised for a periodic control, combines the use

of influence lines, genetic algorithm, and neural network. Further efforts have been

made to validate strategies, based on transfer learning concept, suitable for the

evaluation of bridge structure which are structural similar and replicated extensively,

like pedestrian bridges in high-density cities.

The use of machine learning algorithms turned out to be of paramount importance

to support all the proposed approaches to obtain highly accurate and automated

solutions.



Contents

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Structural Health Monitoring aided by Big Data and Artificial Intel-

ligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and outline of the thesis . . . . . . . . . . . . . . . . . . . . 3

1.3 SHM systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Vibration-based and static-based methods . . . . . . . . . . 5

1.3.2 Techniques for non-destructive evaluation . . . . . . . . . . 6

1.4 State of the art methodologies: model-based and data-based approaches 8

1.4.1 Model-based methods . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Data-based methods . . . . . . . . . . . . . . . . . . . . . 9

1.4.3 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Limits and open challenges . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Principles of the proposed methodology . . . . . . . . . . . . . . . 15

2 Customised active monitoring system for a steel arch highway bridge

control 17

2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 17



Contents vii

2.1.1 Description of the structure . . . . . . . . . . . . . . . . . . 18

2.2 Monitoring and control system . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Active monitoring . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Monitoring architecture . . . . . . . . . . . . . . . . . . . 21

2.2.3 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.5 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Methodology and Validation . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Dynamic monitoring . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Theoretical and practical issues of data analysis . . . . . . . 30

2.3.3 Natural frequency and damping ratio: range of scattering . . 33

2.3.4 Dependence of structural modal characteristics on opera-

tional and environmental factors . . . . . . . . . . . . . . . 41

2.4 Detection of anomalous behaviour . . . . . . . . . . . . . . . . . . 50

2.5 AI support: K-means algorithm . . . . . . . . . . . . . . . . . . . . 54

2.6 Discussion and results . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.7 Further developments: a numerical modeling for comparison with

different damage scenarios . . . . . . . . . . . . . . . . . . . . . . 64

2.7.1 Numerical modeling . . . . . . . . . . . . . . . . . . . . . 64

2.7.2 Damage scenarios . . . . . . . . . . . . . . . . . . . . . . 65

3 SHM strategies for simply-supported prestressed concrete railway bridges

assessment 69

3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.1 Description of the structure . . . . . . . . . . . . . . . . . . 71

3.2 Data anomaly detection for a continuous condition assessment . . . 72

3.2.1 Monitoring architecture . . . . . . . . . . . . . . . . . . . 74

3.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 78



viii Contents

3.2.3 Correlation model . . . . . . . . . . . . . . . . . . . . . . 80

3.2.4 Assessment of the midspan strain of the unloaded deck . . . 81

3.2.5 Assessment of pier rotations and joint expansion . . . . . . 93

3.3 Genetic algorithm supported by influence lines and a neural network

for bridge static periodic assessment . . . . . . . . . . . . . . . . . 97

3.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4 In Closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4 Transfer learning for structural health monitoring of urban pedestrian

bridges 118

4.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2.1 Transfer Component Analysis . . . . . . . . . . . . . . . . 119

4.2.2 Statistical modeling for feature classification . . . . . . . . 121

4.3 Transfer learning between numerical models . . . . . . . . . . . . . 122

4.3.1 Analitycal and numerical solution . . . . . . . . . . . . . . 126

4.3.2 Methods and results . . . . . . . . . . . . . . . . . . . . . 129

4.4 Transfer learning between two pedestrian bridges . . . . . . . . . . 137

4.4.1 Structures and data set description . . . . . . . . . . . . . . 137

4.4.2 Methods and results . . . . . . . . . . . . . . . . . . . . . 139

4.5 In Closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Deep convolutional neural network support in a multi-level non-invasive

tunnel assessment 142

5.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2.1 Ground Penetrating Radar . . . . . . . . . . . . . . . . . . 143



Contents ix

5.2.2 Convolutional Neural Network and Transfer Learning . . . 147

5.2.3 Multi-level damage classification . . . . . . . . . . . . . . 149

5.2.4 Two dimensional Fourier Transform for image processing . 152

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.4 In Closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 Conclusions 160

References 164



List of Figures

1.1 Pipeline for BD analysis . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 General view of the viaduct . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Transversal view during construction . . . . . . . . . . . . . . . . . 19

2.3 Book of Dead of Ani . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Active Monitoring strategy . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Location of instrument groups in the structure . . . . . . . . . . . . 22

2.6 Position of the surface temperature sensors in the bridge . . . . . . 23

2.7 Structural Health semaphores in the Active Monitoring System . . . 25

2.8 Numbered accelerometers and nodes application . . . . . . . . . . . 29

2.9 Bridge measurements. a) Sensors on the arch b) Sensors on the beam 29

2.10 Stabilization diagram . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Estimated modal parameters (narrow viewing windows) . . . . . . . 35

2.12 Frequency-damping ratio diagram (first mode) . . . . . . . . . . . . 36

2.13 Estimated modal parameters (large viewing windows) . . . . . . . . 37

2.14 Frequency-damping of a session (February 2018) for the first mode . 38

2.15 Normal distribution (first natural frequency) and lognormal distribu-

tion (first damping ratio) . . . . . . . . . . . . . . . . . . . . . . . 39

2.16 a Temperature in time and average monthly temperature. b, c

Monthly modal parameters and estimation error for the first mode . 43



List of Figures xi

2.17 Trend of the first modal parameters over 23 ranges of temperature . 44

2.18 Modal assurance criterion . . . . . . . . . . . . . . . . . . . . . . . 46

2.19 Natural frequency history (12 sessions from the same year) . . . . . 47

2.20 First natural frequency and damping ratio based on measurement

sessions and used channels . . . . . . . . . . . . . . . . . . . . . . 49

2.21 Vibration modes (Reference modal parameters from SSI-UPCX

method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.22 Damage identification flow chart based on the k-means method . . . 55

2.23 Clustered data (Dataset 1) . . . . . . . . . . . . . . . . . . . . . . 59

2.24 Clustered data (Dataset 2) . . . . . . . . . . . . . . . . . . . . . . 60

2.25 Clustered data (Dataset 3) . . . . . . . . . . . . . . . . . . . . . . 61

2.27 Finite element model . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.28 DS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.29 DS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.30 DS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.31 DS4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1 Prestressed bridge damage occurrence: (a) transverse cracks; (b)

longitudinal cracks; (c) traces of humidity with efflorescence on the

intrados; (d) cavity on the intrados; (e) cables with strands inter-

rupted at the intrados; and (f) corroded and broken wires. (Images

courtesy of ANAS Gruppo Ferrovie dello Stato Italiane.) . . . . . . 70

3.2 General view of the Oglio Viaduct . . . . . . . . . . . . . . . . . . 71

3.3 Elevation view of the Oglio viaduct . . . . . . . . . . . . . . . . . 72

3.4 Hierarchical monitoring architecture . . . . . . . . . . . . . . . . . 74

3.5 Network of sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Functions for getting the additional temporal features (e.g., hour of

the day). a Sine function; b Cosine function . . . . . . . . . . . . . 83



xii List of Figures

3.7 The correlation model’s input and output parameters. a Temperature

extrados; b Temperature intrados; c Air temperature; d Strain . . . . 84

3.8 Signal E15. a original series; b normalized series . . . . . . . . . . 85

3.9 Strain. Signal E15. Subdivision into train, validation error and test

anomaly set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.10 Scatter plot E15. (validation set) . . . . . . . . . . . . . . . . . . . 88

3.11 a Anomaly plot; b Test set; c Residual plot . . . . . . . . . . . . . 90

3.12 Design thresholds (DT) and undamaged conditions thresholds (UCT) 92

3.13 Longitudinal rotation CL2 CHA: original (blue) and filtered (orange)

signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.14 Displacements. Subdivision into train, validation error and test

anomaly set a Signal MGB1T; b Signal MGB1L . . . . . . . . . . 96

3.15 Pile elevation and a cross-section of a bridge displaying the cho-

sen beam (cm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.16 Simply supported beam discretized by 27 elements. Red = generic

couple of damaged elements . . . . . . . . . . . . . . . . . . . . . 100

3.17 Damage assessment process flowchart . . . . . . . . . . . . . . . . 101

3.18 Example of the influence line approach for identifying damage: (a)

midspan deflection; and (b) left support rotation . . . . . . . . . . . 102

3.19 Architecture of neural networks . . . . . . . . . . . . . . . . . . . 107

3.20 Three damage scenarios identified by influence line methodology . . 108

3.21 Cost based on parameter combinations and damage scenarios . . . . 110

3.22 Error histogram and performance of neural network . . . . . . . . . 112

3.23 Distribution of errors . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1 Original space. Black (Healthy source data), Blue (Healthy target

data), Red (Damaged target data) . . . . . . . . . . . . . . . . . . . 125

4.2 Beam with a crack . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3 Simply supported cracked beam . . . . . . . . . . . . . . . . . . . 129



List of Figures xiii

4.4 Standardized space. Black (Healthy source data), Blue (Healthy

target data), Red (Damaged target data. . . . . . . . . . . . . . . . 130

4.5 Latent space. Black (Healthy source data), Blue (Healthy target

data), Red (Damaged target data) . . . . . . . . . . . . . . . . . . . 136

4.6 Bridge Target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.7 Bridge Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.8 Typical cross section of both bridges. . . . . . . . . . . . . . . . . 138

4.9 Ambient vibration test on Bridge A with additional mass caused by

pedestrians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.10 Original space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.11 Standardized original space . . . . . . . . . . . . . . . . . . . . . 140

4.12 Latent space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.1 2-lane tunnel (3 profiles) and 3-lane tunnel (5 profiles). . . . . . . . 145

5.2 GPR interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3 Multi-level damage classification methodology flowchart . . . . . . 149

5.4 Hierarchical tree for the multi-level approach . . . . . . . . . . . . 150

5.5 Two examples of 2D-FFT pre-processing of road tunnels GPR pro-

files. (a) and (c): samples extracted from the entire GPR profile; (b)

and (d): 2D-FFT magnitude pre-processed images . . . . . . . . . . 155

5.6 Training progress, loss, and accuracy versus iterations . . . . . . . . 156



List of Tables

2.1 Technical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Inclinometer technical ratings . . . . . . . . . . . . . . . . . . . . . 26

2.3 Inclinometer technical ratings . . . . . . . . . . . . . . . . . . . . . 27

2.4 Noise specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Stabilization criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Indices of first natural frequency distribution (small data set) . . . . 35

2.7 Indices of first damping ratio distribution (small data set) . . . . . . 35

2.8 Indices of first natural frequency distribution (large data set) . . . . 39

2.9 Indices of first damping ratio distribution (large data set) . . . . . . 40

2.10 Indices of linear fit for first natural frequency . . . . . . . . . . . . 45

2.11 Indices of linear fit for first damping ratio . . . . . . . . . . . . . . 45

2.12 Nominal conditions: range of frequency scattering . . . . . . . . . . 51

2.13 Errors for each natural frequency . . . . . . . . . . . . . . . . . . . 53

2.14 Errors for combination F1-F2-F4-F8. . . . . . . . . . . . . . . . . . 53

2.15 Errors for combination F1-F4-F8. . . . . . . . . . . . . . . . . . . 53

2.16 Normalized centroid and maximum distance from it for nominal

conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.17 Matching matrix Datasets 1 . . . . . . . . . . . . . . . . . . . . . 59

2.18 Matching matrix Datasets 2 . . . . . . . . . . . . . . . . . . . . . 60

2.19 Matching matrix Datasets 3 . . . . . . . . . . . . . . . . . . . . . 60



List of Tables xv

2.20 Model specifications . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Technical specifications of strain gauges . . . . . . . . . . . . . . . 77

3.3 Technical specifications of thermometers . . . . . . . . . . . . . . . 77

3.4 Technical specifications of clinometers . . . . . . . . . . . . . . . . 78

3.5 Input and output parameters for correlation model . . . . . . . . . . 81

3.6 Models evaluation metrics (validation error set) . . . . . . . . . . . 87

3.7 Percentages of detected anomalies. Damage detection range defi-

nition: [80%, 100%]. [40%,80% [, [0%-40% [. Damage detection

colours definition: green, yellow, red. . . . . . . . . . . . . . . . . 91

3.8 Percentages of detected anomalies. Damage detection range defi-

nition: [80%, 100%]. [40%,80% [, [0%-40% [. Damage detection

colours definition: green, yellow, red. . . . . . . . . . . . . . . . . 91

3.9 Input and output parameters for correlation model . . . . . . . . . . 94

3.10 Models evaluation metrics (validation error set) . . . . . . . . . . . 95

3.11 Percentages of detected anomalies. Damage detection range defi-

nition: [80%, 100%]. [40%,80% [, [0%-40% [. Damage detection

colours definition: green, yellow, red. . . . . . . . . . . . . . . . . 95

3.12 Grid search for hyperparameter optimization . . . . . . . . . . . . . 105

3.13 Damage scenarios for tuning GA numerical parameters . . . . . . . 109

3.14 Combination 558 . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.15 Combination 558 cost and accuracy . . . . . . . . . . . . . . . . . 111

3.16 Example of new case with two damaged elements . . . . . . . . . . 113

4.1 Mean values of Gaussian distributions of the key structural parameters122

4.2 Definition of the dispersion factors for combi parameter (i=1, 2, or 3) 123

4.3 Parameter definition (∆, comb, and DS) for meaningful cases . . . . 124



xvi List of Tables

4.4 Errors in damage identification for different length differentials and

levels of dispersion for a 15 mm crack depth . . . . . . . . . . . . . 132

4.5 Errors in damage identification for different length differentials and

levels of dispersion for a 12 mm crack depth . . . . . . . . . . . . . 132

4.6 Errors in damage identification for different length differentials and

levels of dispersion for a 10 mm crack depth . . . . . . . . . . . . . 132

4.7 Errors in damage identification for different length differentials and

levels of dispersion for a 15 mm crack depth . . . . . . . . . . . . . 133

4.8 Errors in damage identification for different length differentials and

levels of dispersion for a 12 mm crack depth . . . . . . . . . . . . . 133

4.9 Errors in damage identification for different length differentials and

levels of dispersion for a 10 mm crack depth . . . . . . . . . . . . . 134

4.10 Error with Direct standardization strategy . . . . . . . . . . . . . . 139

4.11 Error with strategy "TCA with SD normalization preprocessing" . . 140

5.1 Technical characteristics of GPR with dual frequency antenna. . . . 144

5.2 Technical characteristics of GPR with high-frequency antenna. . . . 144

5.3 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4 Samples for class. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.5 Confusion Matrix for Levels 1, 2a, 2b, 3, 4, 5 and 6. without FT

application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.6 Confusion Matrix for Levels 1, 2a, 2b, 3, 4, 5, and 6 with FT application158



Chapter 1

Introduction

1.1 Structural Health Monitoring aided by Big Data

and Artificial Intelligence

In recent decades, Structural Health Monitoring (SHM) strategies have been proposed

to address the need for infrastructure asset control. According to several researchers,

the main aims of such procedures are damage detection and structural condition

assessment. [1–3].

Similar to the human body, which can be affected by diseases throughout one’s

life, facilities are complex systems that can degrade over time. Owing to deterioration

processes, an infrastructure asset is always changing. Structural damage is usually

described as a variation in the geometric or material features, boundary conditions,

and element connectivity that has a negative impact on structural performance, safety,

and reliability [4, 5]. It does not always represent a complete failure, but rather poor

performance [6–8] that can lead to the failure state if no remedial action is performed.

The type of damage determine the collapse mode. It can be gradual or abrupt [3, 9].

For example, corrosion and fatigue failures often are the result of a long process,

whereas earthquakes and fire-induced damage can cause a complete collapse in a

short period of time [10]. Human-induced and environmental factors [11, 12] make

engineering structures, especially large-scale ones such as bridges and tunnels, more

vulnerable to damage accumulation and propagation, reducing the structural life

cycle [13].
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By detecting, locating, and evaluating the extension of damage is possible to

assess the remaining service life of the structure and develop a plan to increase it

through maintenance. Structured data has substantial benefits in mitigating the risk

of human and economic losses. De Sitter’s "Law of Five" estimates the devastating

impact of a lack of maintenance on overall costs [14].

Visual inspection has traditionally been used to discover defects on structure

surfaces and analyze structural condition. Nevertheless, even for well-trained inspec-

tors, visual examination is labor-intensive, time-consuming, and subjective, making

it impossible to track condition changes in real time. To address the problem, SHM

strategies have been developed and proposed in recent decades

SHM techniques can be divided into three categories based on the control time

duration. The first is continuous monitoring, which points out changes in the global

structural behaviour. The second consists of non-destructive periodic testing (NDT),

which allows for structural local investigation. The third is accomplished by spot

tests. Accurate results, reduced false and missed alarms, and shorter times to damage

detection (DT) are all important features of strategies that have a positive impact from

both an economic and safety standpoint. Early warnings of anomalies are critical

for SHM techniques to allow for adequate prognostics and health management

development (PHM). SHM has applications in mechanical, aeronautical, and civil

engineering, and it needs synergy between several engineering sectors. Operational

evaluation, data collecting, feature extraction, and statistical model creation are

four procedures that can describe an SHM process [3]. Starting with the problem

definition, the type and position of the sensors used to collect data are fundamental.

This allows for the extraction of useful structural properties, such as those that are

sensitive to possible damage. Then, to intercept and quantify the damage, statistical

models are required.

Algorithms have been integrated into the SHM framework in the last decades

owing to their capacity to analyze data and perform a real-time assessment for

decision making [15]. Big data (BD) and artificial intelligence (AI) are two promising

tools for a successful data interpretation and structural evaluation [16].

John Mashey coined the word "big data" in a speech in 1998 [17]. Ward and

Barker later defined it as follows: ªBig data is a term describing the storage and

analysis of large and or complex data sets using a series of techniques including, but

not limited to: NoSQL, MapReduce and machine learning" [18]. Big data analysis
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is the act of handling an exceptionally large dataset for any type of computing across

several storage devices with independent processor units.

Artificial intelligence refers to an algorithm or intelligent agent that interprets

data in order to take actions. John McCarthy coined the term in 1956 [19], and

it has since spawned lots of new technologies, including computer vision, natural

language processing, machine learning, and robotics. More in detail, AI is a branch

of computer science that aims to create machines that solve problems and perform

activities with human-like intelligence. The early uses of AI mostly focused on

rule-based problems. Initially, this technique was only used to tackle rule-based

issues successfully [20]. Although addressing the latter proven to be a useful aid

in speeding up and standardizing some of the tasks previously handled by humans,

the main challenge nowadays is to transfer common sense knowledge to modern AI

systems so that they can solve problems that cannot be solved through rule coding

simply [21]. In the broad field of artificial intelligence, the concepts of machine

learning (ML) and deep learning (DL) have been introduced to successfully address

and solve challenges connected to the knowledge-based approach. It allows for the

acquisition of knowledge through training based on a large amount of data [22],

avoiding explicit programming [23]. Owing their higher performance in a damage

detection scenario, machine learning [24] and deep learning techniques [25, 26]

have been gaining a lot of attention [27]. Machine learning approaches have become

more feasible in engineering applications as computing power has increased and chip

and sensor technology has advanced. Recent research has highlighted that machine

learning approaches are more systematic and efficient to traditional ones, particularly

when dealing with fuzzy, vague, or noise-contaminated data [28].

ML has been applied to solve multiple problems in structural engineering. Studies

showing its applicability for a wide range of structural problems, can be found in

[29–34]. As a result, research in this area is of interest, and new approaches can aid

more established ones.

1.2 Aims and outline of the thesis

The goal of this thesis has been to develop and validate methodologies for the

assessment of large-scale infrastructure, taking into account the characteristics and

issues of the typology to which they belong, in order to provide accurate knowledge
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regarding the current structural state and forecast its evolution. Studies have been

carried out to propose appropriate and economically viable methodologies, supported

by the use of AI algorithm for widely repeated structures. This chapter gives a brief

introduction of structural monitoring systems (Section 1.3), emphasizing the different

types of data that can be recorded, the damage-sensitive features that follow, and

the main approaches associated with them. Then, the focus shifts to the various

methodologies utilized to analyze the data (Section 1.4), as well as the limitations and

the open challenges that the current state of the art faces and the general methodology

proposed in the work. Following that, the thesis is organized as follows: Chapter 2

focuses on methodologies supported by an unsupervised algorithm for the control of

an highway steel arch bridge, Chapter 3 shows techniques suitable for pre-stressed

concrete railway bridges based on both supervised and unsupervised algorithms,

Chapter 4 investigates the use of domain adaptation techniques (transfer learning) for

pedestrian bridges assessment, Chapter 5 presents the development of a multilevel

methodology for the tunnels control, and Chapter 6 outlines the conclusions of the

entire work.

1.3 SHM systems

Hardware and software components make up a typical structural health monitoring

system. The sensing and data acquisition interface make up the hardware part. A

wide range of instruments can be used to record measurements from which damage-

sensitive features can be extracted (e.g., accelerometers, velocimeters, strain gauges,

load cells, fiber-optic sensors, acoustic emissions, ground penetrating radar, ultra-

sonic, magnetic field, radiography etc.). On the other hand, the software component

of a structural monitoring system is composed of signal-processing and pattern-

recognition algorithms that convert the signals obtained by the sensing network into

key information about the structure under monitored.

The following subsections will focus on some of the main instrumentation,

damage-sensitive features, and methodologies aimed at non destructive testing (NDT)

for structural condition assessment purposes. Emphasis will be placed on the different

types of data that can be used. For this reason, first, monitoring systems based on

dynamic and static measurements 1.3.1 will be discussed in detail. Subsequently,
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other approaches for a non-destructive evaluation that are succeeding in the field of

SHM will be examined 1.3.2.

1.3.1 Vibration-based and static-based methods

Vibration-based methods

Sensors that record the dynamic behavior of structures, such as accelerometers,

are widely used ones as damage is frequently identified by changes in dynamic

behavior. In the literature, there are several studies on vibration-based methods [35–

40]. Vibration-based damage detection systems have been developed on frequency-

domain features. The latter entails frequencies, mode shapes, damping ratio, modal

strain, modal strain energy, modal curvature, and modal flexibility. The modal param-

eters: natural frequency, damping ratio, and mode shape (in addition to the signal’s

own parameters such as peak acceleration/displacement) describe the evolution of

structural behavior. Damage structural state is linked to changes in modal parameters.

For instance, the development of a crack would imply a change in geometry and, as

a result, a shift in stiffness, which could be easily caught by frequency variation.

Further types of damage that can be detected by the change in modal parameters

include scour of a bridge pier and loosening of a bolted connection.

The modal parameters are estimated by means of Operational Modal Analysis

(OMA) and Experimental Modal Analysis (EMA) [41]. One of the most extensively

utilized dynamic identification approaches is OMA. Such approach is output-only

because excitation is not known and assimilated to white noise. It avoids using

equipment to excite the structure (for example, vibrodyne and hydraulic actuators).

This prevents the interference with the operations of the facility [42] and implies a

saving in testing time and cost. The key to strengthening this method and making

it effectively successful for SHM purposes is to perform dynamic identification

procedures in a fully automated way [43]. Structural Health Monitoring dynamic

approaches have been studied and developed for decades and are excellent tools. The

following are just some examples of data analysis based on ambient vibration record-

ing [44–46]. Particular attention should be required when using this methodology in

situ. Damage detection based on frequency response [47, 48], mode shapes [49, 50],

and damping ratios [51, 52] has revealed that data volume, monitoring time, uncer-

tainty [53], and environmental effects all have a huge effect on damage detection
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since they generate data variance [54]. Several novelty detection approaches in the

civil engineering field, in fact, are unable to distinguish between frequency variations

caused by environmental/operational conditions and the ones caused by structural

deterioration. There are methods for filtering data to remove disturbances, but this

is a difficult operation that typically necessitates long-term monitoring and, conse-

quently, a large amount of data storage. Besides, such methods have been revealed

to be relatively unaffected by local damage in real structures. The drawbacks in

addressing the negative consequences produced by these issues continue to stymie

progress to real-world applications [50]. In addition, infrastructure managers often

find it difficult to store dynamic data from continuous monitoring, and therefore

prefer analyses using static data.

Static measurements-based methods

Sensors that record static features of structures, such as displacements [55], defor-

mations [56], and curvatures [57], are frequently used because they make it easier

to reach the second level of the hierarchical structure of the damage identification

problem, i.e. the damage location. Higher degradation local sensitivity and easier

damage localization are two benefits resulting from their utilization [58]. They are

also usually simpler and more accurate than dynamic ones [59]. Insights into the use

of static measurements in the field of SHM can be found in Chapter 3 of this thesis.

Section 3.2, in particular, provides an overview of studies in the area of anomaly

detection.

1.3.2 Techniques for non-destructive evaluation

It is thought required to focus on at least three of the most valuable non-destructive

structural condition evaluation approaches in order to get a thorough overview of

them. Digital image correlation methods, acoustic emissions-based techniques, and

Ground Penetrating Radar-based approaches are the ones that will be deepened.

Digital image correlation methods

Digital image correlation (DIC) is a powerful technique to control the integrity of

large scale civil infrastructure. It is a non-contact, full field, and optical measuring
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technique that utilizes digital cameras to determine surface geometry, displacement,

strain [60], and the dynamic of a structure. Recent advancements in camera technol-

ogy, optical sensors, and image processing algorithms have aided the emergence of

this approach [61]. Recently, DIC systems have demostrated their effectiveness in

providing accurate quantitative information. Some successful approaches have com-

bined this technique with unmanned aerial vehicle to perform non-contact optically

based measurements to monitor the health of bridges [62, 63].

Acoustic emission methods

Acoustic Emission (AE) is a non-destructive testing technique used to identify defects

and damage in heterogeneous elements. Acoustic emissions are, in fact, ultrasonic

waves generated by a rapid release of energy caused by discontinuities or propagation

of cracks in materials subjected to states of tension or deformation. Such technique

involves piezoelectric broadband sensors to detect the waves released by materials

with frequencies typically between 50kHz and 1 MHz. It is, thus, employed in several

disciplines of engineering that require quality control and structural monitoring; in

particular, it is used in civil engineering to monitor crack propagation and estimate

the extent of structural damage. It is also feasible to calculate the quantity of energy

emitted during crack propagation and obtain information on structure durability.

Recent studies have shown the application of this technique for structural integrity

assessment [64–67].

Ground Penetrating Radar methods

Ground Penetrating Radar (GPR) is one of the most widely used non-destructive

structural monitoring techniques for tunnel control [68]. It is a geophysical technique

that uses high-frequency electromagnetic wave impulses. It boosts visual inspection

techniques that are fit for detecting surface defects [69], providing an effective and

fast interpretation of several tunnel lining defects [70]. Nonetheless, since data is

typically manually scaled and interpreted or stored and then later analyzed off-line,

the process of GPR data interpretation is generally computationally expensive [71].

Subsection 5.2.1 will provide more information and insight into this technique.
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1.4 State of the art methodologies: model-based and

data-based approaches

In this section, emphasis is placed on the type of approach used to process the

information collected during the monitoring process. In detail, the focus is on the

presence (model-based method) or absence (data-based method) of structural models

and on the use of domain adaptation techniques (transfer learning).

1.4.1 Model-based methods

By updating model parameters with input-output measurements, the model-based

method tries to develop an accurate finite-element model. Nevertheless, prior knowl-

edge of the true model is needed for the estimated parameters to fall within an

appropriate confidence interval; however, the parameters determined by a mathe-

matical procedure may not be unique, resulting in less physical interpretability [16].

Among the optimisation techniques to update the model, one chooses to focus on

genetic algorithms. This choice is due to the fact that the genetic algorithm (GA)is

one of the most optimisation techniques used in the field of SHM to update structural

models for damage detection. It produces good solutions for the parameters to be

estimated from a population of individuals that changes through time [72, 73]. Once

created a population of npop individuals, each solution is examined by means of

a cost function. The best individuals are selected to generate new individuals (off-

spring) utilizing crossover and mutation operators. Then, merge and sort operations

are conducted. The better npop individuals will make up the new generation. The

process is finished when the set number of iterations is reached or the quality of

the better solution is deemed satisfactory. Just the "best appropriate" individuals

survive and reproduce, lowering future generations costs. The GA’s design needs

the specification of several qualitative and quantitative parameters [74]. Operators

such as selection, crossover, and mutation are instances of the former. The latter

includes population size (npop), crossover rate (CR), and mutation rate (MR). The

main organization of the algorithm is determined by the first set of parameters, called

high-level parameters. Low-level parameters are the second set of parameters that

are utilized to generate a version of the algorithm. The GA method has been used to

address several damage identification problems. A lot of studies have been focused
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on comparing computed and measured dynamic structural responses (e.g., natural

frequencies and mode shapes) [75–78]. They require a big number of sensors and

a large amount of data to be successful. The findings of studies integrating both

static and dynamic features [79] show an improvement. It is less frequent to utilize a

combination of modal parameters and static displacements [79, 80], or static features

solely [81].

1.4.2 Data-based methods

The data-driven approaches build a model in the form of statistical representations,

such as the probability density function [82], and so can account for uncertainty in

raw data. Data-driven methods do not require any prior knowledge because they

immediately analyze data patterns of structural condition changes. In this way,

damage detection may be converted into a statistical pattern identification problem

[10]. Even though these methods have been extensively used in SHM data processing,

there are still certain shortcomings in their common applications.

In the context of modern AI systems, data-driven methods leverage machine

learning and deep learning algorithms. A set of operations, as depicted in the

following flowchart (Figure 1.1), are frequently required before and after their

application. Following the logical flow shown in the Figure just mentioned, particular

attention will be paid to data pre-processing, data integration, feature extraction and

selection, and pattern recognition in the remainder of this subsection .

Data preprocessing, which involves data cleaning, transformation, and dimension

reduction, is used to ensure that data are suitable for further analysis [83]. Noise

removal, trend or outlier removal, and missing value imputation are all part of data

cleaning. The technique of reducing the number of variables in attempt to optimise

pattern recognition performance is known as dimension reduction. The approaches

for reducing dimensions can be linear or nonlinear (e.g., principal component analy-

sis and non linear principal component analysis). After preprocessing operations,

data integration methods are often needed. They combine dissimilar data from

several sources [83]. Details on this technique can be found in [84, 85]. After data

preprocessing and integration, engineering features capable of defining structural

behavior must be extracted and selected [86]. Typical features used in different SHM

issues can be found in Section 1.3. Another aspect that deserves further investigation
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is data normalization. Some insights can be found in Chapter 2 and Chapter 3. As

it is possible to observe in the Figure 1.1, the most widely used machine learning

algorithms can be of different type (supervised and unsupervised). In the following,

particular attention will be paid to their differences and fields of application.

Data 

preprocessing

•Data cleaning

Noise treatment

Outliers treatment

Missing data imputation

•Data transformation

•Dimension reduction

Data 

visualization

Feature 

engineering

•Feature extraction

Frequency-domain features

Time-fre domain features

Statistical features

Mechanical features

•Feature selection

Ensemble learning

Pattern 

recognition

Data 

integration

•Result visualization

•Data visualization 

analysis

Schema mapping

Record linkage

Data fusion

•Data normalization in 

PR

•Supervised learning

Ensemble learning

•Unsupervised learning

•Novelty detection

Fig. 1.1 Pipeline for BD analysis

Unsupervised learning algorithm

Unsupervised learning methods rely on not labeled data. They analyze the distribu-

tion of data in order to extract relevant information about its structure. Unsupervised

learning approaches include clustering and association analysis.

Clustering divides unlabeled data into groups based on their internal structures.

The main clustering algorithms are: K-means clustering [87], Hierarchical clustering,

DBSCAN [88] , Fuzzy clustering [89], and Self Organizing Mapping.
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The approach of discovering meaningful relationships, i.e., association rules, is

known as association analysis [90]. Due to the high processing cost, association

analysis is often employed with categorical data and is rarely utilized with numerical

ones.

Supervised learning

Supervised algorithms need a dataset composed of human-labeled data for training

and aim to extract the optimal mapping between input and output (or target) [22].

Classification and regression are part of supervised learning.

Classification algorithms use labeled data from the training set to train a classifier.

Then, the model can accurately predict the labels of incoming input data. The

following are some of the most widely used classification methods: Artificial Neural

Network (ANN), Support Vector Machine (SVM), Naive Bayes, Bayesian Network,

Decision trees, and K-nearest neighbor. Damage identification, load effect analysis,

load pattern recognition, and structural retrofitting assessment are often faced by

means of classification methods. Besides, also the image recognition issue is often

formulated as a classification task in damage detection framework (see Chapter 5) .

Convolutional Neural Network (CNN) and transfer learning approaches, in particular,

have been used to improve performance by using pre-trained deep networks. The

direct extraction of data features is one of the key advantages of such AI networks.

The structure of the network is defined by hundreds of layers, which are akin to the

biological structure of the visual cortex. Each layer picks up some characteristics

from the images. Convolution, activation, pooling, and fully connected layers are the

four types of layers that make up the network architecture [91]. The first contains

neurons that are put in a feature map and are connected to adjacent neurons in the next

layer through convolution kernels. The second is used to extract nonlinear features.

The third minimizes the size of the convolved feature in order to improve algorithm

performance and lowers computing costs. The last layer evaluates the previously

extracted attributes and generates a vector with the probability of belonging to each

class. The transfer learning approach allows for the usage of deep learning without

a large dataset and a long training time. It entails retraining existing networks

for different categorization scenarios using their dataset. Transfer learning for

network fine-tuning is faster than training a network from scratch, and it shows

outstanding accuracy even with less training data. Refs [92–97] show some examples
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of structural damage classification using transfer learning and convolutional networks.

It’s worth mentioning that the types of categorized defects in most literature research

are fairly limited, and the data frequently refer to optimal laboratory conditions.

Classification algorithm have some drawbacks in the SHM field. The main problem

is linked to the presence of few real data matching the damage. For this reason, the

abilities of classification algorithms are frequently examined using data not from real

facilities. The use of data by numerical or experimental models, which by definition

doesn’t reflect the actual structural behavior, weakens this methodology.

The regression operation is similar to the classification one. What changes

is the type of values predicted. Continuous values are predicted by regression,

whereas discrete labels are predicted by classification. Correlation relationships

between dependent and independent variables are described by regression techniques.

Nonlinear regression, Support Vector Regression (SVR), and Autoregressive models

(ARX) are some of the most commonly utilized regression approaches. In the field

of SHM, studies linked to the usage of regression models can be found in [98–103].

Despite the availability of numerous algorithms, it is impossible to discover one

that is ideal in all aspects; this phenomena is known as the "no free lunch theorem" in

supervised learning [104]. An idea to solve the problem is ensemble learning, which

combines many base learners to boost performance.The main ensemble methods are:

Voting [105], Adaboost [106], Bagging [107], Random Forest [108], and XGBoost

[109]. More details about XGBoost are provided in the section 3.2

Methodologies

One of the approaches worth focusing on for the development of SHM strategies

is novelty detection. The first stage in novelty identification is to create a baseline

model to reflect healthy structural condition; the second step is to compare new data

to the baseline, with novelties being identified if they exceed specified thresholds.

The novelty detection methodology is often used because there are very few scenarios

where experimental data are accessible in damaged cases [10, 110]. However, data

generated by models (e.g., the F.E.M. model) are not always valid for expressing the

effective structural condition due to the great complexity of the systems, the intrinsic

inaccuracy of the model, and the problems in development and implementation of

damage scenarios. As a result, a created normal condition model is frequently used

in damage diagnosis.
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The representativeness of the training dataset is linked to the efficacy of the

novelty detection algorithm [111]. Due to a lack of representativeness, a distinction

between faults and operational conditions is lost, resulting in false alarms when

novel operating conditions that were not seen during the training period are classified

as defects [112]. To overcome this problem, approaches based on the concept of

transferring information between systems with comparable properties but operat-

ing under different conditions [113, 111] have been developed. The extraction of

significant features is another part of this process that needs great attention. This is

particularly important in applications with a high dimensionality, namely when there

are several factors monitored and used for damage detection. Promising approaches

can be found in [114].

There are three main techniques for implementing this approach. The former

uses probabilistic approaches; the second reconstruction-based techniques; the third

clustering-based methods. As regard the first, literature references for deepenings

can be found in [115–119]. As regard the second, it is worth noting that it use

reconstruction errors, generated by algorithms like regression, to pinpoint novelties.

The errors are normally assumed to be Gaussian and the confidence level can be used

to set a threshold. Literature references for such approach can be found in [120–123].

Section 3.2 contains deepenings and a subsequent application of this approach. As

regard the third, it is interesting to note that it is often used incrementally. Reference

can be found in [124–128].

1.4.3 Transfer learning

A subfield of machine learning is transfer learning. It proposed a new tool to

assess the structural state of bridges on the basis of data from one or a small number

of them. This is gaining significance because bridge authorities can accumulate data

from a small number of representative bridges, i.e., bridges that are not nominally

identical but have structural similarities, to develop machine learning algorithms that

can detect damage in bridges without long-term monitoring data. This may alter the

way we execute SHM, allowing us to shift to population-based SHM and save money

on both the investment and operation of persistent SHM equipment. [129–132]

set the groundwork for population-based SHM in mechanical systems. Transfer

learning is a technique for mapping feature and label distributions from various

structures, labeled sources, and unlabeled target structures into a common space. As
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a consequence, classifiers trained in the source domain on a labeled structure will

adapt to a distinct unlabeled target structure. The goal of transfer learning is to aid a

learner develop in one domain by transferring information from a correlated domain.

Domain adaptation is a type of transfer learning in which the goal is to minimize

the distance between different data distributions in the source and target domains.

[133] provide a concise history and comprehensive overview of transfer learning

and domain adaptation. In the area of SHM, many authors have lately implemented

transfer learning for damage identification. [129] used many laboratory case studies

to illustrate three domain adaptation techniques: Transfer Component Analysis

(TCA), Joint Distribution Adaption (JDA), and Adaptation Regularization based

Transfer Learning (ARTL). New solutions for handling the challenge of population-

based SHM have been developed as a result of this effort. Nevertheless, no data

from the real world has been utilized. Further in-depth studies focusing on the use of

TCA can be found in [134, 135]. Further advantage related to the transfer learning

would be the ability to use data from a laboratory-based experimental structure

or numerical data from a finite element (FE) model to label data for any bridge,

resulting in significant gains in applying SHM to the majority of bridges. FE model

data has previously been used by several researchers to assess the reliability of

domain adaptation [129]. Despite the fact that some laboratory applications [136]

have already been shown, there are few publications related to data stemmed from

real-world bridge.

1.5 Limits and open challenges

Although the literature in the topic of SHM is extensive, there are limitations and sev-

eral open challenges that researchers in the field must address. These include the lack

of criteria for selecting appropriate algorithms in specific tasks, the quantification of

data and their typology needed for BD strategies in SHM, the difficulty in evaluating

damage detection algorithms given that most bridges are in good condition, the

development of economically sustainable methodologies on large scale.

This thesis merges studies that have aimed to develop SHM strategies suitable

for specific structural typologies and by means of numerical simulations, but above

all real case studies, has attempted to investigate and propose solutions to overcome

certain issues. For example, the impact of data volume and monitoring time on the
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estimation of damage-sensitive features and their uncertainty has been investigated.

On the other hand, the lack of some parameters has been underline as a factors

decreasing the algorithm performance and solutions have been proposed and tested.

Furthermore, approaches have been presented to reduce the calculation time and the

need to record many parameters in order to fulfil the requirements of an economic

and sustainable control system. Finally, methods to avoid the long-term monitoring

of all the structures to be controlled, tested by means of damage simulations on real

structure, have been investigated underlying their potential and limitations. Clearly,

there are many challenges yet, but the results are promising.

1.6 Principles of the proposed methodology

The general methodology that such thesis proposed is composed by six main steps,

summarized as follows:

• choice of main infrastructural typologies;

• for each selected typology, structural studies are carried out to highlight the

critical structural elements and potential failure modes;

• definition of control parameters;

• definition of the monitoring architecture and sensors typology in an cost

optimization and network robustness view;

• choice of the machine learning algorithm to automate the assessment process;

• validation on the procedure.

First of all, as previously mentioned, the most common construction materials

and static schemes were considered as key factors to choice the main infrastructural

typologies to be controlled. The similarity of the structural response derived from

belonging to the same typology is the starting point for the extensive application of

the proposed strategies.

Second, structural studies and consideration turned out to be pivotal for the

choice of the sensors to be used and their position along the structure. For each
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case study the nature of parameters to be controlled was chosen on the basis of the

evidence revealed by studies in the literature. Such choice was strictly linked to the

economic sustainability and robustness of the system to be implemented.

A machine learning algorithm selection was then made in order to automate

the process of structural condition evaluation using the chosen parameters/features.

Due to the large number of variables that influence a choice’s quality, this was a

challenging undertaking. Data and problem type, computational time, and complexity

are a few of them.

Finally, the developed strategies were validated with numerical and/or real sce-

nario.



Chapter 2

Customised active monitoring system

for a steel arch highway bridge

control 1

2.1 Problem definition

Steel arch suspended highway bridges belong to a structural typology that has been

developed for a long time and presents some peculiarities. Notably, suspenders are

one of the most vulnerable bridge components [137] under repeated traffic loads.

[138]. Issues related to the combined effect of corrosion, axial forces, and unexpected

bending stresses can lead to damage, especially in the lower ends of short bridge

suspenders. Rainwater ingress is the primary cause [139], but there are also large

secondary stresses [140] caused by relative movements between the cable and the

girder. Hangers are particularly prone to fatigue phenomena. However, despite being

a key parameter in the hanger’s fatigue behavior, the fluctuation of axial forces in

1Part of the work described has been previously published in:
B. Chiaia, G. Marasco, G. Ventura, C.Z. Quirini. Customised active monitoring system for structural
control and maintenance optimisation. Journal of Civil Structural Health Monitoring 10(2), 267-282
(2020).
B. Chiaia, G. Ventura, C.Z. Quirini, G. Marasco. Bridge active monitoring for maintenance and
structural safety. In: Arêde, A., Costa, C. (eds) Proceedings of ARCH 2019. ARCH 2019. Structural
Integrity, vol 11. Springer, Cham, 866–873 (2020).
G. Marasco, B.Chiaia, G.Ventura. AI based bridge health assessment. In: 9th International Workshop
on Reliable Engineering Computing (REC 2021) is ªRisk and Uncertainty in Engineering Computa-
tions. (2021)
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them has received little attention [141]. Corrosion fatigue can occur as a result of

these symptoms, resulting in faster wire deterioration, premature suspender fracture

[142, 143], and bridge collapse [144, 145]. Criticality related to structural typology

and material issues are accentuated in part by the service class to which they belong.

Talking about highway bridges, in fact, there are many unknowns related to vehicular

loads as it is not known exactly in a given time instant which is the distribution

of such loads on the carriageway and their entity. As a result of all of the issues

highlighted so far, a monitoring system has been designed whose architecture is

composed of several types of sensors that are arranged so that the static and dynamic

structural responses may be controlled in real time and automatically.

2.1.1 Description of the structure

The structure under examination is a highway suspended arch steel bridge with a

span of 250 m. Its structural layout is a single arch connected to the inferior way by

vertical steel cables. A chain beam and transverse cantilevers with an 8-meter spacing

along the bridge axis constitute the bridge deck. The deck has two carriageways with

a total width of 17.55 meters per way, including the docks. Depending on where they

are along the arch, the steel cables are made up of 33, 37, or 43 strands. The chain

beam is placed at a higher level than the road surface one to shield it from possible

impacts with vehicles.

Fig. 2.1 General view of the viaduct
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Fig. 2.2 Transversal view during construction

Figure 2.1 and 2.2 show some illustrations of the structure.

2.2 Monitoring and control system

This section describes the monitoring and control system devised by Prof. G. Ventura,

which served as the foundation for the technique that has been developed afterward.

2.2.1 Active monitoring

The proposed application is the first implementation of the novel paradigm of Active

Monitoring ideated by G. Ventura for ARCOS Engineering. Active Monitoring

entails interpreting obtained data in real time, using a computational model of the

structure, performing a real-time structural assessment, and detecting potential crisis

mechanisms. It has been created with a clear objective. Capacity of executing a

continuous automated structural health check for the structure going beyond the

limits of traditional monitoring. Besides, it is a tool for the right suspension cable

tensioning during construction. Indeed, being there is a strong closed loop connection

between the cables and the structure, this is a nontrivial process for the specified

bridge type. The methodology exploits a computational model to assess continually

the correlation between the recorded physical data. A structural response that differs

from what is expected could be an indicator of damaged structure. The methodology

also considers environmental factors, thus mitigating the effect that variation in

these factors could have in indicating possible damage. Consider a balance scale

and the displacement at the weighing dishes (Figure 2.3), as well as the rotation of

the beam, to show the general principle of Active Monitoring. We assume the two
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displacements at the weighing dishes to be equal and opposite during regular use of

the balance, and that the rotation of the balance beam is linked to the displacement

at the dishes via a trigonometric law. Such correlation between the acquired data is

always present and, in Active Monitoring, it is assessed all the time.

Fig. 2.3 Book of Dead of Ani

Sensors are installed in a structural system, such as a bridge, to estimate loads

and other physical features such as displacement, rotation, thermal deformation, and

acceleration. After adequate elaboration, the sensor data is used as input to the finite

element model of the structure, whose output is compared to sensor data, as shown

in (Figure 2.4).
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Fig. 2.4 Active Monitoring process

This gives the possibility of to determine whether the structure is behaving as

expected and so validate its health condition. As a result, the strategy derived from

the Active Monitoring paradigm differs significantly from traditional monitoring, in

which absolute thresholds are checked and, in most cases, data is off-line elaborated

by expert teams, resulting in increased cost and processing time. Obviously, an

automated system like Active Monitoring cannot substitute an expert’s analytical

capacity in structural data analysis, but it can be a priceless tool for the activation of

first-warning procedures (e.g., specialized counseling).

2.2.2 Monitoring architecture

As Figure 2.4 shows, the data recorded by the sensors are both static and dynamic.

There are twelve measuring points in the monitoring architecture, the locations of

which are illustrated in Figure 2.5.
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Fig. 2.5 Position of instrument groups in the structure

With reference to Figure 2.5, the following is the list of sensors and their loca-

tions:

• D01 and D07, high resolution servoinclinometrs;

• D04, D08, D10, D12, air temperature and humidity sensor;

• D03, D05, D09, D11, triaxial accelerometers;

• D08, D12, differential wind pressure transducer (probes are installed in be-

tween D08/D09 and D11/D12);

• D04 strain gages at runway cantilevers;

• Each suspension cable is instrumented with a load cell.

In addition to these, there are steel surface temperature sensors. In detail, there are 4

sensors per measuring point located at the four sides of the cross section (top, down,

left, right). In Figure 2.6, these sensors are labeled with "TR". Each of these is fitted

into a RACK’s area.
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Fig. 2.6 Position of the surface temperature sensors in the bridge

A mounting steel plate has been used to provide a common mounting platform

for the sensors and to ensure a standard installation methodology in all positions.

Sensors have distributed differently on the plate based on the data acquisition point

of the structure. The sensor placement just described is the result of knowledge of

the structural typology to which the bridge belongs.

2.2.3 Data Acquisition

The data acquisition infrastructure is composed of five measurement stations con-

nected by a fiber optic data network that reaches the monitoring control room,

located at the east bridge end. The placements of the five measuring stations have

been chosen to keep sensor connection cables length to a minimum. The hardware

architecture for the measuring stations is composed of Industrial Programmable

Application Controllers and high precision A/D modules, which have been selected

for optimal durability and future spare part availability. The sensor values are sent
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to the data processing computer at a frequency of 5 Hz, which is suitable with the

structure first frequencies of oscillation, which are much below 1 Hz.

2.2.4 Data Processing

For data acquisition and Active Monitoring processing, ARCOS Engineering has cre-

ated a bespoke software. The software collects data, assess for proper communication

with the data acquisition system, calls the finite element computational engine and

processes the outcomes. It compares sensor and model data to check structural health

and sends alarm messages and information about the system’s effective functioning.

The simplified model is composed by 228 nodes and 130 beam elements, with bar

elements modeling the cables. Data processing follows acquisition with a small delay

to minimize excessive wear on the processing computer hard disks. A total of 1,000

time steps are bundled together and sent to the finite element computational engine

as loading conditions to be examined in a single run. This makes the computation

highly fast and removes the need for intensive I/O disk operations. LUSAS Version

15 by FEA Ltd (http://www.lusas.com/) is the software for the finite element model.

The program is driven by text data files, that the software generates, and returns a

text results file that is analyzed to gather the analysis’ findings. LUSAS has been

selected for its dependability, speed of execution, and capacity to assign several load

typologies (e.g., forces, thermal, acceleration, displacement, and rotation) in a quick

manner. The simplified 3D model of the structure takes into account the loads in the

list below:

• tension variation at suspension cables;

• temperature and temperature gradients in the entire structure (measured at

steel surfaces and interpolated in between the measuring points);

• bending and torsional rotations;

• wind pressure;

• inertial forces. These are recorded at the four accelerometers in the structure

and are extrapolated to the entire structure using the theory of influence lines.

The abovementioned loads are considered as variations in relation to an initial

condition, because the sensor readings begin when the structure is already built.
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Once the finite element model has produced its results, the measured quantities at the

sensors are compared to the model’s corresponding values, and if there is a mismatch,

a warning is provided. The tension in a suspension cable, for example, is measured.

The model is after loaded with the above list of loads, and the normal force at the

cable is calculated. In principle, the measured and computed forces should be the

same. The system generates graphs of measured vs computed quantities, and a

synoptic view with semaphores is provided for a quick graphical representation of

the findings of the comparisons (see Figure 2.7).

Fig. 2.7 Structural Health semaphores in the Active Monitoring System

2.2.5 Instrumentation

In this subsection an in-depth examination of the monitoring instrumentation is

carried out. In detail, the main characteristics of strain gauges, inclinometers and

accelerometers are outlined.

As straing gauge, the Magtrol KG-05 Extensometer has been used. It is designed

to measure deformations of built or constructed objects while they are loaded. It

can be utilized as either a load cell or a force transducer since the output signal

is proportional to the applied load. When large transducers are ineffective for

measuring strain, the KG-05 Extensometer is the best option. Its compact size and
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flat mounting make controlling deformations on steel structures simple. Table 2.1

shows its mechanical, electrical and environmental characteristics.

Table 2.1 Technical ratings

Mechanical characteristics

Maximal Usable Load 1.5 × nominal load

Electrical characteristics

Nominal Traction and Compression Deformation (ε) ±600.10−6

Nominal Sensitivity (at ε = 600.10−6)

±600.10−6

Input Impedance 990 Ωto1200Ω

Output Impedance 1000 ±10 Ω

Environmental characteristics

Temperature Compensation Steel: α = 11.10−6

Compensated Temperature -10 °C to +40 °C

Operating Temperature -30 °C to +70 °C

Protection Class IP 66

As inclinometer, the Jewell Emerald series inclinometer has been chosen. It is

a low cost, high precision inclinometer designed with higher accuracy than com-

parable MEMS devices. Table 2.2 highligths the electrical and the environmental

characteristics. Table 2.3 lists further technical ratings.

Table 2.2 Inclinometer technical ratings

Electrical characteristics

Number of Axes 1

Input Voltage Range, (VDC) +15 to +30

Input Current, mA, max 40

Output Impedance, Ohms, nom 10

Noise, Vrms, maximum 0.002

Environmental characteristics

Operating Temp Range -55°C to +85°C

Storage Temp Range -60°C to +90°C

Shock 500g, 1 msec, ½ sine
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Table 2.3 Inclinometer technical ratings

Static/Dynamic

Input Range, °

±3 ±14.5 ±30 ±45 ±60 ±90

Full Range Output (FRO -Note 1) VDC ±0.5%

0-5 0-5 0-5 0-5 0-5 0-5

Nonlinearity (Note 2) % FRO maximum

0.05 0.02 0.02 0.02 0.4 0.05

Scale Factor, Volts/g, nominal

47.8 10.0 5.0 3.5 2.9 2.5

Scale Factor Temp. Sensitivity (SFTS), PPM /°C maximum

100 100 100 100 100 100

Bandwidth (-3 dB), Hz nominal

5.0 5.0 5.0 5.0 5.0 5.0

Output Axis Misalignment, ° maximum

0.25 0.50 0.50 0.50 0.50 0.50

Pendulous Axis Misalignment, ° maximum

0.25 0.50 0.50 0.50 0.50 0.50

0° Output Temp. Sensitivity, Volts /°C maximum

0.0036 0.0010 0.0007 0.0005 0.0005 0.0005

Resolution and Threshold, radians maximum

1 1 1 1 1 1

As accelerometers, the Model 4332 produced by the company Measurement

specialties T M have been selected. It is a MEMS Triaxial accelerometer, with low

noise, offering both static and dynamic response packaged in a rugged aluminum

housing with an integral cable assembly. The Model 4332 is offered in ranges from

±2 ±5g and features gas damped MEMS sensing elements. The accelerometer

has a set low-pass filter at 50Hz and an operating temperature range of -40°C to

+85°C. The accelerometer is also certified to IP68 protection at 10m depth. The

accelerometer is designed to be operated from 5-30Vdc excitation and provides

a 0.5 to 4.5V full scale output. The output is DC-coupled and should be used in

single-ended mode. A 2.5Vdc bias will be present on the output leads and the output

of the accelerometer will be 0.5-4.5V full scale. The model 4332 accelerometer
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incorporates a LP filtered output for a high output signal. The noise specifications

for this accelerometer are detailed in the Table 2.4.

Table 2.4 Noise specifications

Full

scale

rating

(g-pk)

Sensitivity

(mV/g)

± 5%

ampl

pass-

band

(Hz)

passband

noise

(µV rms)

spectral

noise (µg−
rms/V Hz)

dinamic

range

(dB)

2 1000 50 80 8 88

5 400 50 50 13 92

2.3 Methodology and Validation

The Active Monitoring system described so far has made use of an in-depth study

of the structural dynamic behavior in order to validate, during its tuning stage, the

computational model used by its data processing software.

In addition to such validation, this study has allowed the definition of a scattering

range of modal parameters identifying an undamaged structural state in the long

term under the effect of environmental factors. On the other hand, critical issues

related to the influence of the length of the accelerometric acquisitions and to the

specific procedures followed in order to obtain a sufficiently accurate estimate of the

dynamic characteristics have been emerged.

2.3.1 Dynamic monitoring

With the goal of obtaining the dynamic behavior of the bridge, an experimental

output-only technique has been adopted. The possibility to continually monitor an

infrastructure for long time, beginning with its construction and continuing during its

life, has provided for the collection of relevant data on the change of its characteristics

over time [146]. It has utilized environmental excitement, as is common in large civil

structures [147]. Indeed, the other possible approach to this end, namely artificial

excitation, is widely acknowledged as being more expensive and having a negative

influence on facility service. Figure 2.8 shows the number of sensors, degrees of
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freedom, and position. Figure 2.9 illustrates some recordings on the bridge deck and

arch.

Fig. 2.8 Numbered accelerometers and nodes application

Fig. 2.9 Bridge measurements. a) Sensors on the arch b) Sensors on the beam

The software ARTeMIS [148] Modal has been used to accomplish the signal

processing. ARTeMIS is a software that can perform a variety of analyses. Among

them there is the Operational Modal Analysis (OMA). It has been also picked because

of its processing speed and the ability to produce outcomes with a high degree of

automation. In addition, to decrease the time of analysis, each measurement session’s

raw data can be processed with the same set of features from a previous session

dubbed "Master Session." Furthermore, based on the structure of the measurements,

several pre-treatment functions can be used before processing the data. The "detrend

function" (to remove mean values and linear trends in the raw data), the "decimation

function" (to narrow the frequency range to that of interest), the "projection channel

function" (to minimize redundant information), and the "filter functions" (to chose the
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frequency range of interest) are the most outstanding. In Figure 2.10, an illustration

of processed signals and decomposition in singular values of spectral densities is

shown. Moreover, ARTeMIS computes the modal parameters uncertainty.

Fig. 2.10 Stabilization diagram

2.3.2 Theoretical and practical issues of data analysis

To emphasize the serial nature of the available records, the analyzed data sets will be

defined by means the expression "measurement session" or simply "sessions." The

algorithm DD-SSI-UPCX (Data Driven-Stochastic Subspace Identification-Extended

Unweighted Principal Component) [149] [150] [151] has been chosen to analyze

the recorded data sets. It utilizes a parametric model to fit the raw time series data.

Such technique in ARTeMIS has also the gain of estimating the modal parameter

uncertainties. Furthermore, the motivation for this choice is due to the method’s

dependability and robustness. It is incredibly useful for flexible structures with low

natural frequencies and damping ratios, as well as modes that are closely spaced

[152]. Recent researches have been carried out in this context to enhance the quality
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of outcomes in these scenarios [153]. An additional advantage is its use even with

small data sets. However, it should be remembered that, in order to produce an

error-free estimate, infinite measurements are required. Indeed, the assumptions that

SSI models are founded on are as follows:

• Infinite amount of data;

• Linear system;

• White noise excitation.

The number of row blocks in the output Hankel matrix, essentially the sum of row

blocks in the past and future output partitions, is a further factor to be taken into

account. Each row block includes a portion of the total number of samples of the

data set (e.g., j samples). When compared to the previous row block, the j samples

inside each row block are shifted by one time-step, equal to the sampling time. To

obtain lower frequencies, the number of row blocks must be increased, although this

results in a significant increase in computing time/effort and memory usage [152]

[154] [155]. However, if this number is excessively high, it will have a negative

impact on accuracy due to the creation of spurious numerical modes. Furthermore,

the maximum model order is tied to the number of row blocks. The model order

can ideally be determined by singular value decomposition of the projection matrix.

When dealing with noisy data, nearly all values become non-zero singular values, and

the model order increases significantly [152]. As a result, there will be a large number

of eigenvalues and most of them are related to spurious modes. Thereby , if the

model order is excessively high, the quality of the estimate may decrease. The main

principle of the SSI approach should be changed in order to increase the accuracy of

modal parameter estimate. The projection of the row space of future outputs into the

row space of past reference outputs, rather than the row space of past outputs, is an

instance of reference-based stochastic subspace identification [147]. Past reference

outputs should be identified as belonging to the "best sensors," i.e., those that can

track motion better. Candidates for such role should be sensors installed in the

best placements, which are those with the highest modal accelerations expected.

Indeed, data from sensors near fixed boundaries or at the zeroes of modal shapes

degrades the identification outcomes. The computational cost is reduced by selecting

specific sensors as references and projecting the row space of future outputs onto past

reference outputs. A potential disadvantage of this strategy is that if all modes are
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not present in the outputs of the chosen reference channels, the identification quality

may decrease. The pre-treatment function "project channel" in ARTeMIS enables

the implementation of this procedure and, as a result, the comparison of results

produced with and without it. The estimated modes are validated in the software

by means of a tool that acts in the frequency domain. The stabilization diagram

is used to detect structural modes (Figure 2.10). It shows the natural frequency

(from zero to the Nyquist frequency) on the horizontal axis and the dimensions of

calculated state models on the vertical one. The stabilisation diagram is a useful

method for highlighting bias errors, such as model bias due to physical reasons and

over-estimation of the system order, and mode bias due to under-estimation of the

system order [156] [53]. Singular values are shown by yellow horizontal lines in

Figure 2.10. Their number represents how many eigenvalues there are in the data.

For each model order, stable modes are chosen based on the following criteria:

• Maximum deviation, for natural frequency (Max Dev f ) and damping ratio

(Max Dev D), between a mode belonging to a model with an order n and the

mode belonging to an order model (n−1);

• Maximum deviation of modal assurance criterion (MAC) of mode shape vector

between a mode belonging to a model with an order n and the mode belonging

to an order model (n−1);

• coefficient of variation (CV) for each natural frequency (CV f ) and damping

ratio (CV D), i.e. the ratio of the standard deviation to the mean value.

Such criteria’ thresholds are user-defined and based on the problem at hand. There is

an extensive literature that outlines the most commonly utilized thresholds for those

criteria [157]. Table 2.5 lists the stabilization criteria that have been applied to the

problem at stake.

Table 2.5 Stabilization criteria

Data

set

Max Dev f CV f Max Dev D CV D MAC

[Hz] [-] [%] [-] [-]

Small 0.00375 0.02 10 5 0.05

Large 0.0002 0.02 0.04 0.2 0.05
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A common value has been utilized for the MAC maximum deviation, both for

small and large data sets. The reasons for selecting the other limit values, which

vary depending on the length of the dataset under consideration, are explained

afterwards. Besides these criteria, the so-called "noise modes" should be avoided.

Many factors can produce noise, including an insufficient number of measurements,

low calculation accuracy, poor sensor accuracy, and erroneous modeling. The modes

with damping ratios higher than 5% (not physical) and less than 0.1 percent (external

periodic excitation) are excluded for this reason. All stable modes should be used

to estimate final modal parameters. The actual structural modes are represented

by the stable modes inside the obtained ’alignments,’. In this framework the term

’alignment,’ refers to the vertical stripes in which the estimated modes that represent

the same physical modes are clustered. The stable modes contribute by means of

their average value, with a weight that is inversely proportional to their coefficient of

variation, to compute the final estimate and the parameter’s uncertainty. Lastly, the

findings obtained using the DD-SSI-UPCXapproach have been compared to those

achieved using the EFDD method (enhanced frequency-domain decomposition).

Thus, a comparison study has been conducted between a time-domain methodology

and a frequency-domain one [158].

As well known, the expected accuracy of the estimate differs for each of the three

modal parameters of the structure. The damping ratio errors are consistently bigger

than the natural frequency and mode shape ones. Large error bounds in damping

ratio estimate are due to his nonlinear behavior, estimator limitations, and the scarcity

of measurements [152]. The number of data points in the records and the number of

block rows are the two most important factors that determines the accuracy of the

modal parameter in stochastic subspace identification. The second aspect has been

explored in other research [152] using sensitivity analysis. The first factor will be

exploited in the present study to reduce the modal parameter uncertainty.

2.3.3 Natural frequency and damping ratio: range of scattering

To determine a scattering range of modal parameters representing the undamaged

structural condition, data acquired unevenly over a period of around one and a half

years have been used and processed with the SSI method. The sampling frequency

utilized in the measurements is 6.66 Hz.
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The "Modal Parameter History Module" in ARTeMIS allows users to view the

structure’s modal parameters over time as a function of measurement sessions in a

historical view. As "Reference Sessions," two measurement sessions, i.e. two data

sets, are chosen. The software can calculate the mean values of modal parameters

for the stable modes in these sessions (Reference Modes). The "Reference Sessions"

stable modes comply with the following tolerances:

• The natural frequency should not differ by more than 10% from the prior

session;

• In terms of MAC (minimum modal assurance criteria 0.8), the maximum

deviation between mode shape extracted by a measurement session and that

determined from the preceding may be less than 0.2.

Links/tracks in the graphical presentation of identification findings are drawn based

on the reference modes. These links enable a real-time visualisation of the modes’

evolution as sessions change. It is also feasible to reach fast assessments. An absence

of connectivity between adjacent sessions, for example, is an indication of a change

in modal parameters.

Narrow viewing windows

The data acquisition system reads and saves accelerometric data in 180-second sets.

Only the "function- detrend" filter has been used to preprocess these single data

sets. The outcomes of the calculated first natural frequencies for the available data

sets are shown in Figure 2.10. These provide a qualitative representation of the

value dispersion. It highlights a maximum value of 0.382 Hz and a lowest value

of 0.365 Hz. Natural frequency has a relatively narrow range of variation. For the

first-mode damping ratio, the same technique has been used. Figure 2.11 depicts

the predicted damping ratios’ flow over time. It has a maximum value of 4.57 %

and a lowest value of approximately 0.25 %. Figure 2.15 shows the outcomes in

terms of natural frequency and damping ratio in a blue histogram. The normal

distribution has been used to fit the first natural frequency, whereas the log-normal

distribution has been used to fit the first-mode damping ratio. Green curves, in the

same illustration, are associated to large viewing windows and are will be explored

afterwards. Tables 2.6 and 2.7 show the values of the position and dispersion indices

for the two distributions, respectively.
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Table 2.6 Indices of first natural frequency distribution (small data set)

Position indexes Dispersion indexes

Mean [Hz] Median [Hz] Range [Hz] Variance [Hz]

0.3742 0.3742 0.0173 4.66 E-06

Table 2.7 Indices of first damping ratio distribution (small data set)

Position indexes Dispersion indexes

Mean [%] Median [%] Mode [%] Range [%] Variance [%]

1.61 1.38 1.01 4.32 0.93

Fig. 2.11 Estimated modal parameters (narrow viewing windows)

Albeit with measuring sessions with a few recordings, the subspace stochastic

technique demonstrates a moderate, but not very high capacity, in discovering stable

frequencies. Obtaining accurate damping ratio estimates, on the other hand, is signifi-

cantly more complicated due to a large inaccuracy (the coefficient of variation for the

first mode is on the order of 10˘1). In the stabilization diagram, the estimated modes

have the highest variation coefficient for damping ratio. As a result, exceptionally

high CV and maximum deviation of damping ratio criteria (see Table 2.5) have been
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set. The construction of clusters based on damping ratio appears to be meaningless

due to the inaccuracy of its estimation. On the other hand, due to the fairly good

quality of the frequency values along the model order, a CV of 0.02 and a maximum

deviation of 0.00375 Hz (about 1% of the expected first frequency) has been used.

As a result, when compared to natural frequency, the estimation of the damping ratio

is significantly less accurate. The frequency–damping diagram (Figure 2.12), which

plots the mean value of the first-mode damping ratio against the mean value of the

first natural frequency with a confidence ellipsoid, demonstrates this. In contrast to

the damping ratio, natural frequency estimate has a very low level of uncertainty.

Moreover, because the ellipsoid seems to be vertical, there is no correlation between

the damping ratio and frequency.

Fig. 2.12 Frequency-damping ratio diagram (first mode)

Although the better natural frequency behavior, the SSI-UPCX technique only es-

timates the first-mode modal parameters for a portion of the sessions for these single

data sets (about 76% ). Finally, the damping estimation is completely wrong, with

an unrealistic scattering range, and the first frequencies do not meet the established

criterion in around 24% of the measurement sessions.
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Large viewing windows

Data sets are merged in this case to provide larger observation windows. After,

it’s looked at how much the accuracy of the modal parameter estimation increases.

Monthly observation windows have been established for this purpose, and data

collected from May to December have been exploited to assess monthly variations.

Measurements from the same month have been concatenated, and the estimations

for modal parameters (natural frequency, damping ratio, and mode shape) have been

examined. Figure 2.13 depicts the extracted first natural frequencies and damping

ratios.

Fig. 2.13 Estimated modal parameters (large viewing windows)

It has been feasible to define an appropriate maximum coefficient of variation

for damping ratios using these data sets. The use of damping ratio as a stabilization

criterion is justified in this scenario due to the quality of the estimations along the

model order. As a result, a modest maximum deviation of damping ratio threshold

equal to around 0.04 % of the expected value for the first mode has been adopted

(see Table 2.5). The limit values for frequencies, on the other hand, are made more
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restricted due to the improved quality of the data. In terms of coefficient of variation,

the uncertainty drops significantly for both parameters. The maximum coefficients

of variation of the final estimations for the first mode are about 10˘4 for natural

frequency and about 10% for the damping ratio. The frequency–damping ratio

diagram (Figure 2.14) for the first mode of a session is displayed to highlight how

the confidence interval shrinks as compared to the previous case (Figure 2.12).

Fig. 2.14 Frequency-damping of a session (February 2018) for the first mode

This improvement enables a considerably more precise estimation and, as a

result, a more realistic assessment of the damping ratio. This demonstrates that a

minimum number of data points are required to achieve a reliable estimate. As in

previous applications [159, 160], the use of small data sets results in substantial

modal parameter errors. Other research [160] have defined a minimum threshold

of points per data set equal to 4000 points to obtain accurate identification of both

modal parameters when the structural frequencies are less than 1 Hz and damping

ratio are less than 1%. This is supported by the findings thus far. Data sets with a

small number of recordings (under 4000) show a response that is better than damping

in terms of frequencies but still unsatisfactory. Indeed, the measurement sessions

from which an estimate may be extrapolated represent for just a portion of the overall

number of measurement sessions. The damping ratio values, on the other hand,

are highly uncertain. Figure 2.15 shows the probability density function of modal
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Table 2.8 Indices of first natural frequency distribution (large data set)

Position indexes Dispersion indexes

Mean [Hz] Median [Hz] Range [Hz] Variance [Hz]

0.3748 0.3748 0.0024 6.58 E-07

parameters estimated for the first mode from narrow and large viewing windows,

respectively, in blue and green.

Fig. 2.15 Normal distribution (first natural frequency) and lognormal distribution (first
damping ratio)

Table 2.8 and 2.9 show the position and dispersion indices for large viewing

windows, which depict the distribution of natural frequency and damping ratio.

By enlarging the observation window, the Gaussian distribution of natural fre-

quencies shirinks around the more frequent value, which is roughly invariant with

respect to the length of the viewing window. This proves that the parameters have
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Table 2.9 Indices of first damping ratio distribution (large data set)

Position indexes Dispersion indexes

Mean [%] Median [%] Mode [%] Range [%] Variance [%]

0.64 0.63 0.61 0.44 0.01

been correctly identified. The damping ratio distribution, on the other hand, be-

comes practically symmetric and shrinks around the smaller more frequent value.

Furthermore, two observations can be done if the frequency stabilization criteria are

modified to be more restricted for data sets with a few measurements. The first is

that the number of sessions from which a parameter estimate is obtained is clearly

smaller. The second is that the dispersion range of the two modal parameters is

shrinking, and the more frequent value of the two distributions is being shifted to

the one displayed for the data set with many recordings. The smaller the allowed

uncertainty, the closer the two curves resemble each other. This is evidence of right

identification. To sum it up, a larger number of measurements points provides for

a more accurate estimate and a smaller scattering range for both parameters. The

reference-based stochastic subspace identification, as described in the subsection

"Theoretical and practical challenges of data analysis," is one technique to increase

the accuracy of modal parameter estimation. The pre-treatment function "project

channel" in ARTeMIS can be used to trigger this analysis. Short data sets have

been analyzed, and the results reveal a drop in the amplitude of scattering range for

both first-mode modal parameters. The amplitude of range is roughly 46 and 40%

for first natural frequency and damping ratio, respectively, as compared to findings

produced without this approach. Nonetheless, the damping ratio range remains

large, and the uncertainty of each estimate in terms of CV appears to have decreased

slightly for natural frequency and increased for damping ratio. Finally, the outcomes

achieved using such technique for a narrow viewing window are insufficient. When

the same investigation has been performed on large viewing windows, no relevant

improvements have been found. In conclusion, the usage of a large set of data turns

out to be essential for an high quality estimate and limited range of scattering. In this

scenario, the minimum and highest range values for the first natural frequency are

0.3736 Hz and 0.3761 Hz, respectively. On the other hand, the first-mode damping

ratio ranges from 0.4204 to 0.8656 %.
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Validation

The results of the SSI-UPCX method have been validated by comparing them to the

outcomes of the EFDD method for large data sets and first mode. The mode value

of the natural frequency distribution increases by about 0.1 percent when using the

latter. The damping ratio distribution’s mode value, on the other hand, is subject

by a 6 percent reduction. For natural frequency and damping ratio, the dispersion

around the mean value is nearly the same for both methods. The modal assurance

criterion has been used to compare the results achieved with the two approaches

in terms of mode shapes. In every case, this index is greater than 90%. In 79 %

of cases, it is greater than 99 %, between 97 and 99 % in 16 % of cases, and less

than 97 % in 5% of cases. Finally, the findings are affirmatively validated since the

differences between the outcomes of the two approaches are very small for all three

modal parameters.

2.3.4 Dependence of structural modal characteristics on opera-

tional and environmental factors

It is helpful to evaluate the cause of the variability shown by the results. First and

foremost, it is critical to determine whether or not each estimate has a high level

of accuracy. It must be discarded from the analysis if its uncertainty is too high.

Second, considering that considerable structural deterioration and/or degradation

cannot occur because the bridge has been recently built and has no design issues,

it is pivotal to determine whether the changes in modal parameters are related to

environmental and/or operational variables. Environmental conditions (temperature,

humidity, rain, and wind) cause normal changes in dynamic behavior, whereas

structural deterioration causes abnormal alterations [161].

The recognition and subsequent filtering of environmental effects are of crucial

relevance for large civil structures, such as bridges, where output-only analysis is

widely used [162], notably for identifying closely spaced modes. Temperature is the

most crucial environmental factor for steel structures like the one at stake. As a result,

the behavior of modal parameters in relation to it has been studied. For many case

studies, the literature [163] reported its effects on bridges. Although the fact that the

impact of temperature on materials and structural systems is well understood, reliable

quantitative evaluation is challenging, especially given the uneven distribution of
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temperature in the bridge structure. Temperature and environmental factors can, in

fact, cause considerable changes in the recorded properties, i.e., on a magnitude

equivalent to or greater than damage. As a result, physical model development is

frequently neglected through preference of a black box system identification method.

The usage of SVM for the Ting Kau Bridge [164] and the implementation of the

ARX model for the Z24-Bridge [161] are two examples in this regard. It is essential

to evaluate the shifting of modal parameters caused by temperature fluctuations

in order to carry out a true structural health identification and prevent erroneous

condition assessment [48]. Since mode shapes are known to be the least sensitive

to environmental changes of the three modal factors, their behavior with regard to

temperature variations has been not investigated. Natural frequencies, on the other

hand, are the most sensitive [165].

Preliminary study: annual trend

An annual trend has been used to conduct a preliminary investigation to determine

how temperature influences structural modes. To begin, each accelerometric acquisi-

tion has been assigned to a temperature. The linear interpolation of the bridge surface

temperatures that the system measures at 1-hour intervals has yielded the temperature

at the moment of the accelerometric data. Then, the measurements’ monthly average

temperature has been computed. The average monthly temperature (diamonds) and

the temperature at the time of accelerometric observations (circles) are shown in

Figure 16.a. Figures 16.b and 16.c show the estimated modal parameters of the first

mode as well as the estimation errors for the SSI-UPCX approach.
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Fig. 2.16 a Temperature in time and average monthly temperature. b, c Monthly modal
parameters and estimation error for the first mode

It is noticeable that the first natural frequency has an inverse relationship with

temperature. As a result, the colder months have the greatest natural frequencies,

and vice versa. The highest variation in the values of the first natural frequency

found in this case is on the order of 0.6 percent, which is significantly less than the

expected variation (5–10 percent) for large span (100 m or longer) highway bridges

[48]. In fact, this latter variation is frequently significant enough to overcome the

changes caused by damages [166]. The damping ratio has a complex correlation with

temperature, presumably because to its intrinsically more uncertain estimate. Indeed,

the average-damping ratio has an oscillating tendency, and the results are essentially

superposed when the error estimates are taken into account. In Figure 2.16, the plot

in green represents the results achieved with the EFDD technique, whereas the blue

graph shows the findings obtained with the DD-SSI-UPCX method. The results of

the EFDD approach are qualitatively comparable to those of the DDSSI- UPCX

method: the relationship of the first frequency with the temperature is validated,

whereas damping has a hazy link.



44 Customised active monitoring system for a steel arch highway bridge control

Study of structural behavior for temperature

A more in-depth investigation has been performed based on the preliminary outcomes

achieved so far on the correlation between the vibrational first-mode frequency of

the structure and temperature. Specifically, the behavior of the first natural frequency

and damping ratio for temperature ranges has been studied with 23 temperature

bands used to investigate the signals’ trend. Each band has a temperature range of

around 3 degrees Celsius. Figure 2.17 displays two plots vs the mean temperature of

each band and a linear weighted fit of the trend, one in terms of natural frequency and

the other in terms of damping ratio. Weights equal to the reciprocals of estimation

variances have been employed to consider the accuracy of the points.

Fig. 2.17 Trend of the first modal parameters over 23 ranges of temperature

The statistic indices concerning the linear fit are summarized in Tables 2.10 and

2.11. For the fit of first natural frequencies, the indices SSE (Sum Squared Error,

which measures the total deviation of the actual values from the fit) and RMSE (Root

Mean Squared Error or Standard Error, which is an estimate of the standard deviation

of the random component in the data) are significantly lower. As a result, with

a slope of 0.0762, the first natural frequency trend can be judged to be obviously
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declining as the temperature rises. When the temperature is below freezing, this

effect appears to be more severe. This behavior is consistent with what has been

observed in other investigations [167, 168, 102]. The damping ratio behavior, on the

other hand, cannot be deemed effectively rising since the departure from the linear

trend line, as indicated by the indices, is too great.

Table 2.10 Indices of linear fit for first natural frequency

SSE R2 Ad jR2 RMSE

0.0107 0.8964 0.8907 0.0244

Table 2.11 Indices of linear fit for first damping ratio

SSE R2 Ad jR2 RMSE

1.4026 0.1989 0.1544 0.2791

Determination of modes

Natural frequency values range from 0.3 Hz to 3 Hz. Nevertheless, the fundamental

structural modes are concentrated in the first half of this range. It is feasible to

quantify the resemblance between distinct modal shapes using the Modal Assurance

Criterion (MAC) [49]. The natural frequencies of interest have been zoomed in on.

The MAC index emphasizes the fact that higher modes have a more complex mode

shape, as they resemble lower modes.



46 Customised active monitoring system for a steel arch highway bridge control

Fig. 2.18 Modal assurance criterion

The similarity of some mode shapes relating to modes with different natural

frequencies can also be surmised by observing the tracks of modes depicted by red

lines in Figure 2.19. In fact, there is a cross-trend among such tracks/links. The

resemblance between the fifth and sixth modes stands evident in large data sets,

Figure 2.18. This figure refers to the second large data set in Figure 2.19, which is

devoid of the third mode. Yet another finding can be made by looking at the MAC

graph of a session where the third mode is identified (e.g., sixth session in Figure

2.19). The MAC index demonstrates substantial correspondences between this and

the first mode in this example.
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Fig. 2.19 Natural frequency history (12 sessions from the same year)

The components of mode shapes have a real and an imaginary part, by definition.

The proportional nature of the damping ratio is reflected in real values. The complex

part is caused by:

• non-proportional damping;

• poor measurements or/and poor modal parameter estimation;

• uneven data.

The complexity plot can be used to determine which components of the mode shape

are real and which are imaginary. This graph depicts each component of the mode

shape with a tip of a vector starting at zero in the complex plan. The real part

of the component is represented on the horizontal axis, while the imaginary part

is displayed on the vertical axis. The vertical component defines the complexity.

All modes, excluding the third, which is emphasized, and the fourth and eighth,
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which are medium, have a very low factor of complexity for large data sets. As a

result, the most of modes are almost fully real, indicating that they are not the result

of numerical issues. Figure 2.19 shows the behavior of the natural frequencies of

interest as a function of the available sessions, with the natural frequency and the

damping ratio of reference modes. With completely visible dots, the graph depicts

the modes that are part of the track (continuous red line). The dots in transparency,

on the other hand, are not connected to the track. A posteriori, the dashed blue line

has been adopted to simply highlight the dots of the third mode.

Furthermore, due to the system’s imperfect synchronization of the accelerometer

readings (estimated at max 10 ms), an assessment of the potential phase error effects

has been performed. The resulting findings have been compared by evaluating

several combinations of the available channels, as indicated by the names of the

nodes in Figure 2.5. The findings from the channels on the nodes listed below have

been evaluated and compared to the results from all channels.

• N.1.;

• N.1. and N.2.;

• N.1. and N.4.;

• N.1. and N.3..

Mode 6 is only obtained if all channels are utilised, according to this investigation.

When a portion of the channels is used instead of all of them, the frequency of the

first mode increases, with a maximum relative variation of 1.77 per thousand.The

fourth digit after the comma is subject to absolute variation. In terms of standard

deviation, this order of magnitude is equal to the frequency uncertainty. The average

ratio of absolute variation to standard deviation is 3. Concerning the damping ratio

of the first mode, the first digit after the comma is subject to absolute variation. On

average, the ratio of absolute variation to standard deviation (related to the results of

combination with all channels) is equal to 3. According to the dispersion range of

the first mode calculated utilizing all channels for the 12 data set (Figure 2.16b, c), it

is observed that:

• The highest frequency achieved by employing part of the channels is slightly

higher (fourth digit after comma) than the maximum of such range;
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• The minimum damping ratio achieved by using only a portion of the channels

is extremely near to the minimum of such range.

To summarize, the error owing to imperfect synchronization can be deemed

small for accurately identifying vibration modes. Figure 2.20 depicts the trend of the

first natural frequency and damping ratio in function to the sessions and the above

mentioned channel nodes.

Fig. 2.20 First natural frequency and damping ratio based on measurement sessions and used
channels

Figure 2.21 shows the mode shapes for the modes indentified by ARTeMIS, with

the exception of the third (since it has high complexity) and the sixth (present only

when all channels are used, showing remarkable similarity to the modal shape of the

fifth mode but not corresponding to a clear peak of the singular value decomposition).
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Fig. 2.21 Vibration modes (Reference modal parameters from SSI-UPCX method)

2.4 Detection of anomalous behaviour

It has been possible to construct a range that encompassed the environmental vari-

ability having the structural response in time in terms of modal parameters. The

range of variability of six frequencies are shown in the Table 2.12. The modes under

consideration are depicted in the Figure 2.21. Hereafter the term "Mode" will be

abbreviated to the letter M.
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Table 2.12 Nominal conditions: range of frequency scattering

Vibration

Mode

Bending

out of

plane

Double

vertical

inflec-

tion

Single

vertical

inflec-

tion

Out of

plane

double

inflec-

tion

Torsional Triple

vertical

inflec-

tion

Frequency F1 F2 F4 F5 F7 F8

min [Hz] 0.373 0.532 0.856 1.044 1.091 1.383

max [Hz] 0.3772 0.540 0.866 1.065 1.105 1.400

Var rel [%] 1.069 1.398 1.167 1.979 1.239 1.238

The nominal conditions boundaries are expressed by the values, maximum and

minimum for each range. A deviation from these values indicates an anoumalous

behavior. This approach is straightforward but have a critical limitation. The

extracted features may appear inside the healthy range in the presence of very small

damages (e.g., during the early stages of degradation development). This may be due

to environmental factors (temperature, solar radiation, wind velocity, and humidity),

operational factors (intensity of traffic flow and potential traffic jam), and errors

due to poor data set and limits of processing techniques [169]. The probability

density functions of the damaged and undamaged states could, in fact, overlap. The

variation owing to EOVs (environmental and/or operational variations) is smaller

for the analyzed bridge than for other highway bridge case studies [166], but not

negligible. Techniques for removing/mitigating EOVs, such as regression modeling

and machine learning approaches, should be employed to improve the effectiveness

of this strategy, however it has been established that successful results can only be

produced with a robust data normalization. This is only conceivable in the presence

of a big volume [170] and high accuracy of experimental data, both of which are

lacking in this case study, hence reliable results cannot be obtained using these

approaches. The modal parameters have been extracted by widening the observation

window of the signals. This has been the strategy adopted for reducing the variability

of the features. The observation window under consideration included 31 signals in

all. This has allowed for a more precise estimation of modal parameters, as well as

the deletion of several highly uncertain values at the range’s boundary. Furthermore,

very lengthy records already contain temperature variability which have allowed the

structural behavior in the studied temperature range to be smoothed. For very small
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damage (weak signals), the percentage of signals that do not result in an alarm can be

exceedingly high. More over half of the damaged signals, as illustrated below, will

not exceed the nominal condition limitations. This means that half of the damaged

signals would not be considered damaged, and the damage detection method would

be far less sensitive. The percentages of false and missed alarms have been obtained

by analyzing signals from intact and damaged structural states. Defining Nd and Nud

as the number of data identified as damaged and undamaged and Ntestud and Ntestd as

the number of tested undamaged and damaged data, False (FA) and Missing Alarm

(MA) have been computed by means of Equations 2.1 and 2.2, respectively.

FA =

(

Nd

Ntestud

)

100 (2.1)

MA =

(

Nud

Ntestd

)

100 (2.2)

Once define FA and MA, the total error (TE) can be define. It is possible to calculate

the total error as the sum of these two terms.

Three potential damaged states have been simulated imposing variations in the

acceleration signals. Many of the most harmful structural events, such as cracks,

foundation settlements, bearing device dysfunction, and connection losses, imply a

change in structural stiffness. A change in the signal frequency is caused by a change

in this structural property, which might occur locally or globally. When a stiffness

reduction occurs there is a resulting increment of the signal period. Therefore, to

simulate damaged signals, a structural response delay (time axis stretching) has been

introduced. Other real-world bridge analyses [171, 172, 170], both with real and

simulated damages, have been used to determine the magnitude order of a realistic

frequency shift caused by a hypothetical structural damage. Notches, in particular,

that can simulate minor damage caused by object collisions, corrosion, or overload,

result in a natural frequency shift of the order of 0.1-0.5 percent on average. The

response in natural frequency that is first investigated is that linked to Modes 1, 2, 4,

and 8, see Table 2.13.
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Table 2.13 Errors for each natural frequency

Damage

Levels

Severity

Degree

Signal

Variation

Error F1 F2 F4 F8

LD7 LOW ∼ 0.33% MA[%] 75.0 97.9 62.5 70.8

LD8 MEDIUM-

LOW

∼ 0.66% MA[%] 41.6 75.0 27.1 39.6

LD9 MEDIUM ∼ 1.0% MA[%] 2.1 35.4 2.1 8.3

The percentage of detected false alarms is zero for all frequencies, except for F2

which shows a value of 12.5 %. To improve damage detection efficacy, a combination

criterion based on the alarm trigger when one of the features is outside the ranges

indicated in Table 2.12 has been utilized. The contribution of the second mode

frequency is the worst in terms of false and missed alarms. When a combination

of the four frequencies is evaluated, the second mode contributes to lowering the

missing alarm, as shown in Table 2.14.

Table 2.14 Errors for combination F1-F2-F4-F8.

Combination

F1-F2-F4-F8

MA [%] FA [%] TE [%]

LD7 56.3 12.5 69.0

LD8 14.6 12.5 27.1

LD9 0.0 12.5 12.5

Table 2.15 shows the findings for a combination of F1, F4, and F8 in terms of

missing, false, and total errors.

Table 2.15 Errors for combination F1-F4-F8.

Combination

F1-F4-F8

MA [%] FA [%] TE [%]

LD7 58.3 0.0 58.3

LD8 18.8 0.0 18.8

LD9 0.0 0.0 0.0
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Due to the lack of false alarms, the total errors is reduced. Nonetheless, the

missing error increases by around 30%, especially for LD8. A large portion of the

observed frequencies turns out to be into the healthy condition range for the lowest

damage level (LD7). Of course, as can be seen from the comparison of Tables 2.13,

2.14, and 2.15, the percentages of missing alarms fall when the alarm is emitted if

only one of the features is outside of the limit values. For the damage level LD8,

the drop in missing alarm percentages is more pronounced. To summarize, for this

structure and for the specific type of damage, the traditional approach may detect

quite well anomalies induced by a damage level equal to or more than LD8, i.e.

medium-low damage.

2.5 AI support: K-means algorithm

For very low damage levels, the traditional approach is weakened. Nonetheless, it

can evaluate the structural status even when the damage location is unknown a priori

and the deteriorated portion is not accessible, making it a useful supplement to visual

examination and non-destructive testing.

To satisfy the need for better potential structural damage diagnosis, a special

clustering technique has been applied. When the data does not contain labels, a

cluster analysis is used to look for groupings of data, or clusters. The data in one

group should be comparable (or connected) to each other, but different (or unrelated)

from the data in other groups. The K-means algorithm has been chosen and used to

solve the problem at hand.

Damage-sensitive features are required for accurate damage detection. As a

result, it has seemed appropriate to leave out features that are more sensitive to

environmental/operational factors. For several reasons, the contributions of the

second, fifth, and seventh natural frequencies have been deemed irrelevant for

damage identification. In detail, the fifth frequency has a high relative variation

already in the nominal conditions (see Table 2.12), the fifth and seventh modes are

closed space modes and therefore readily misidentified, and the second frequency is

the least damage-sensitive as highlighted by Table 2.13.
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The flowchart in Figure 2.22 depicts the steps of the clustering process, which

uses the K-means method to assign a structural "health/damaged" condition to the

signals.

Fig. 2.22 Damage identification flow chart based on the k-means method

K-means is a partitional clustering strategy that is categorized as an unsupervised

learning system. It divides data, which is represented by a vector of features, into

non-overlapping subsets (clusters). This approach allows for the visualization of

similar data in clusters using a specific metric. Its goal is to build data groupings

based on the feature vector distances. The requirements for creating clusters include

high homogeneity among data from the same group and low homogeneity across data
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from other groups. Once the number of clusters has been determined, k centers must

be located in order to minimize the intra-cluster distance. This algorithm necessitates

a significant amount of computation time [127]. Several iterative approaches to

quickly converge on an optimum have been developed. One of them [173] has three

basic steps:

• Selection of k point centers (k centroids);

• Assign each data/signal to the cluster centroid nearest to it;

• Compute the new k point centers.

As long as convergence is obtained, the last two steps are repeated. The K-means

method minimizes the intra-cluster distance at each iteration [127]. A matching

matrix can be used to evaluate the algorithm’s performance. There are three things

that can have a detrimental impact on performance. Indeed, when clusters are of

different sizes, densities, and non-globular geometries, K-means performs poorly.

Many clusters are commonly utilized to overcome these limits. Another disadvantage

of this method is that different initial centers can result in different clusters being

generated. It is a good idea to repeat the algorithm numerous times to overcome this

difficulty. The most key aspects about the K-means theory can be found in [87]. From

the standpoint of SHM, the traditional K-means approach allows for the analysis

of acquired data/signals and the distinction of two clusters. In the case of a single

damage source, one will belong to a healthy condition and the other to a damaged

state. This can offer a "snapshot" of the structural condition, but it hinders tracking

structural changes over time and possible damage evolution from its early stages

before it reaches a critical scale [127]. The procedure proposed in the flowchart

(see Figure 2.22)can be used to detect early damage indicators. The first step is to

create an undamaged state using Td training data, which is represented by one cluster

(k=1). The benchmarks that define this nominal condition are its centroid (C) and

the maximum distance (Dmax) from it. Then, one by one, additional signals are

analyzed. The counter c is updated for each new signal, and the distance (d) between

the new signal and the nominal centroid is determined. When this value exceeds

Dmax, the counter (count) is increased, highlighting an anomaly. The number of

clusters k is set equal to 2 when this value (count) equals a persistence number (N).

To mitigate false alerts, the features of the undamaged pattern and the persistence

number are utilized. Indeed, if the K-means algorithm with a number of clusters
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greater than 1 was used every time a new signal was acquires or when a very small

number of signals were showed d > Dmax, the number of false alarms would be

extremely high, and the data would most likely appear divided into two groups that

were not related to healthy/damaged condition but to warm/cool one. When critical

time units are reached, a check of the optimal number of clusters is performed to

track the evolution of the damage level. Ccritical is the number of signals included in

a critical time unit. As a result, the critical time unit is a control unit that allows the

analysis process to be speeded up by using a discretized computation of the optimal

value of k (Kopt). On the other hand, it relates to a period of time during which just

one level of damage can grow. The initial hypothesis is that the potential damage

level in a first critical time unit is one, and there is no verification of the ability of

the algorithm to develop a data underlying structure model with a different value

of k that is best for the task at hand. The concept that only one level of damage

can be present in the first critical unit before verification (e.g. for c=2*Ccritical,

c=3*Ccritical, etc.) is based on the fact that for the first critical units, the evaluation

of some factors such as materials properties, environmental impact, and load is

simpler, and the hypothesis made turns out realistic. To sum up, the value of k in the

proposed procedure is equal to:

• 1 if count < N;

• 2 if (count >= N and Kopt <2);

• Kopt calculated for n*Ccritical if (count >= N, n*Ccritical < c < n+1 Ccritical,

and Kopt >2), with n natural number starting from 2;

The Matlab program has been used to implement the algorithm. The K-means++

algorithm has been utilized to select the k initial cluster centroids (first step of

the iterative process described in the current Section), which optimize the running

duration and the final solution [174]. The second and third steps of the iterative

approach described above correspond to the so-called batch updates phase, which

tries to reduce the sum of point-to-centroid distances. This phase can fail to arrive at

the correct solution, and it is occasionally followed by the so-called online updates

phase. The batch updates phase is sufficient for the problem at hand, and it is

consequently the only one implemented. As a result, the procedure is quick. Among

the several distance metrics available, Squared Euclidean distance has been chosen.

Furthermore, the default value in Matlab (100) has been selected as the maximum
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number of iterations to achieve convergence. The empty clusters have been deleted,

but the method has been set to keep track of them presence. It’s a good idea to

repeat the method numerous times with different initial centers to optimize the

inter-cluster distance. The argument ’Replicates’ has been set to 10 in this case.

Data normalization is another crucial factor that should not be overlooked [175].

This is a pivotal pre-processing task since scaling data in a given range ensures

that each feature has the same weight. A Min-Max normalization has been used

for this particular case. In addition to the issues discussed so far, it is important to

dwell on the fact that outliers can distort the right positions of the k point centers,

making K-means clustering particularly susceptible to them [176]. The deletion of

the outliers has yielded no benefits in the analyzed case. The number of clusters

has been set to 1 to learn the undamaged pattern. Table 2.16 shows the normalized

location of the centroid as well as the greatest normalized distance (Dmax).

Table 2.16 Normalized centroid and maximum distance from it for nominal conditions

M1 M4 M8 Dmax

0.51 0.42 0.47 0.58

When a number N of signals has a distance from the normal condition centroid

greater than the defined threshold (Dmax), the number of clusters k is updated to

two. Moreover, some criteria may be used to determine if structural alterations have

occurred, which, in the case of early-stage damage recognition, can suggest the pro-

gression of negative phenomena over time. They enable the ideal number of clusters

(Kopt) to be calculated, indicating the presence of a possible damage progression. If

this number rises, the damage level is likely to rise as well. The Calinski-Harabasz

clustering criterion [177], the Silhouette index [178], the Davies-Bouldin criterion

[179], and the gap statistic criterion [180] are among the criteria presented in the

literature. The Calinski-Harabasz relies upon the sums of Squared Euclidean distance

between the feature vectors and the centroids of the predicted clusters and the optimal

value of k corresponds to its maximum value. The Silhouette index evaluates the

difference between intercluster distances and intra-clusters distance and the optimum

value of k must maximize this index. The Davies-Bouldin criterion utilizes the intra

and the inter-clusters distance as well and, for this criterion, the optimal value of k

corresponds to its minimum. Finally, the Gap criterion calculates the logarithmic

mean of the pairwise distance. In this case the optimum value of k is correlated to
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the maximization of this criterion. With such procedure, there will not be the need to

select damage level thresholds.

The matching matrix has been used to evaluate the accuracy of the proposed

methodology and determine whether there are any improvements over the traditional

approach. The ability of the algorithm to correctly identify the structural state can be

gauged by comparing real and predicted clustered signals. The real and predicted

classes of the signal are represented by the rows and columns of the matching

matrix, respectively. A combination of test undamaged dataset (TestUD) and datasets

corresponding to the levels of damage described before have been used for the

analysis. Since the amount of signals in all three scenarios is fewer than the assumed

Critical threshold, the number of clusters utilized is equal to two. The division of

the data (signals) for each studied Dataset is shown in Figures 2.23, 2.24, and 2.25.

Cluster 1 contains signals from the undamaged state, while Cluster 2 the ones from

the damaged state. Both are, of course, connected with a centroid.

• Dataset 1: (TestUD) and LD7

Table 2.17 shows that the total error is similar to that produced by the traditional

method (variation of roughly 3%). The error caused by a missed alarm is cut

in half at the expense of the false alarm. As a result, despite the error level is

still high, the clustering technique results on the safe side.

Table 2.17 Matching matrix Datasets 1

Real Class Healthy predicted Damaged predicted TE

Healthy 68.8% 31.2% (FA) 60.3%

Damaged 29.1% (MA) 70.1%

Fig. 2.23 Clustered data (Dataset 1)
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• Dataset 2: (TestUD) and LD8

The total error in the shift from Dataset 1 to Dataset 2 is clearly reduced, as

shown by the comparison between Table 2.17 and Table 2.18. The total error

is increased (by about 50%) as compared to the previous approach, however it

is worth noting that the error due to missed alarm is dropped by more than four

times. Because around 1/5 of the undamaged signals are labeled as damaged,

this strategy is more expensive than the traditional approach in this scenario.

The drastic reduction in missing alarm, on the other hand, puts this strategy on

the safe side.

Table 2.18 Matching matrix Datasets 2

Real Class Healthy predicted Damaged predicted TE

Healthy 77.1% 22.9% (FA) 27.0%

Damaged 4.1% (MA) 95.9%

Fig. 2.24 Clustered data (Dataset 2)

• Dataset 3: (TestUD) and LD9

In this case, the cluster strategy performs excellently, although somewhat

worse than the traditional approach.

Table 2.19 Matching matrix Datasets 3

Real Class Healthy predicted Damaged predicted TE

Healthy 100.0% 0.0 (FA)% 2.1%

Damaged 2.1 (MA)% 97.9%
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Fig. 2.25 Clustered data (Dataset 3)

When the largest value among the optimal values, computed by means of the

three criteria, is employed as the number of clusters, better results in terms of

missing alarms have been attained for all three damage levels. The smallest damage

level, LD7, has the most significant absolute improvement. Indeed, with LD7, the

percentage of errors due to missing alarms drops to 6.25 percent. In comparison

to the previous scenario, there is a fourfold reduction. The obtained total error is

lower than the previous one, with a value of 52.05 percent. Obviously, the number

of false alarms grows. Nevertheless, this growth is much lower compared to the

missing alarms errors reduction. These considerations lead to the conclusion that,

if the structure is new and the first assumed damage level is low (e.g., LD7 - LD8),

the calculation and application of Kopt would be reasonable even if the number of

signals is less than 2*Ccritical. Due to the presence of environmental factors, it

may be more than 2. The undamaged states measured at high temperatures and the

damaged states observed at low temperatures may be similiar. In scenarios where a

higher level of damage is promptly present (LD9), however, using the highest value

of k results in the worst performance of the algorithm because a little gain in terms

of missing alarms is offset by a large rise in false alarms.

To summarize, the K-means algorithm produces promising results, especially for

very low damage levels. Its use means a significant reduction in errors caused by

missing alarms. It already gives adequate results from a safety standpoint for the

damage level LD7. It avoids several missing alarms, at the expense of an increase

in false alarms. It is preferred over the traditional strategy for early-stage damage

levels because it provides more safety.

The proposed methodology enables the detection of progression and growth

of damage phenomena. The optimal value of k is computed when the crucial unit
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of time is achieved. In the succession of control units, a greater value of k could

indicate an increase in the extent of structural deterioration. It is feasible to test the

capacity of recognition of rising damage by using the three criteria for calculating

the optimal value of k in the analysis of data encompassing all three damage levels

(LD7-LD8-LD9). Figure 2.5 shows the findings for the first three time units.

Fig. 2.26 a) First unit, b) second unit, and c) third unit

2.6 Discussion and results

In this chapter, dynamic data provided during the initial calibration period of a long-

term monitoring system on a suspended arch steel bridge has been examined to allow

a further validation of the innovative Active Monitoring techniques and to lead to

operational observations for the purpose of developing successful control strategies.

Subsequently, advantages and disadvantages of the two proposed approaches for

damage detection have been highlighted.

The merging of the extraction of damage-sensitive features with their accuracy

have turned out to be essential. Specifically, one of the factor most affecting the

estimation of the features and their uncertainty is the length of the analyzed data

set, expressed in terms of number of records. The uncertainty of the features is

pivotal because is reflected in the dispersion range of the parameters indicating the

undamaged condition of the structure, which can then be utilized to detect damage.
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Small errors can be seen in the frequency estimation, but huge errors can be

seen in the damping one. According to the literature, errors are bigger for smaller

datasets, confirming that having a large number of points per observation is required

to produce a narrow range of scattering.

The study of the effect of temperature on modal parameters has certainly high-

lighted its strong influence on these parameters. Such influence is reflected in the

effectiveness of damage detection methods.

Natural frequencies have been chosen for the damage identification purpose be-

cause of their low uncertainty. The analysis have aimed to compare the performance

of two methods for damage detection using a test sample that incorporates variability

induced by environmental effects. The following are the key findings, observations,

and conclusions derived from this survey:

• For very small damage levels, the standard technique produces significant

errors. Such errors are caused entirely by the worst part of the total error,

which is the absence of alarms;

• The clustering strategy outperforms the other method for the studied small

damage levels. It greatly reduces the error due to missing alarms but increases

the one due to false alarms. From the engineers’ perspective, this move is

unquestionably beneficial. It is preferable to remedy a false positive through

inspections than to fail to detect damage. Of course, false alarms must also be

avoided because of the high economic impact. Developments in this direction

are planned through the accumulation of a larger volume of data that will allow

more accurate results and mitigate environmental effects;

• An additional computational effort in the determination of the optimum value

of cluster numbers in the application of the K-means algorithm produces a

further improvement in terms of missing alarm errors for very small damage

levels. If a high level of safety is required, this clustering strategy is preferred.

Another advantage of this method is the ability to track the evolution of the

appropriate number of clusters for calculating damage increases. Indeed, a

growing value of optimal k over time can be used to infer a change in the data

and a probable increase in damage severity;

• Greater data consistency, completeness, and quality would suggest that the

clustering algorithm’s already excellent performance may be improved. In
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crucial cases for the K-means algorithm (clusters with sizes and densities that

differ significantly), the importance of the persistence number (N) and the

optimal number of clusters (Kopt) is critical in reducing the expected rise in

error in terms of FA and MA;

• The uncertainty in choosing the optimum value of clusters due to the not-

perfect correspondence among all the values given by different criterion is

a feature that needs to be improved when using the clustering method. Un-

doubtedly, this, as well as the not-perfect connection between each optimal

value and the actual number of data groups, indicates that more performant

features be investigated as a future direction for this work. Both the explored

approaches would benefit from more effective features. For instance, the

Spectral Moments (SMs) could be used as damage features with higher signal

quality. The high ability of these features, covering the entire frequency range,

in identifying small changes between normal and distorted signals has been

demonstrated in [176]. Furthermore, the adoption of modal shape indicators

such as MAC and COMAC could be explained by the fact that they are less

sensitive to other factors. However, combining various factors could result in

more damage-sensitive features.

2.7 Further developments: a numerical modeling for

comparison with different damage scenarios

Further developments of the study presented so far concern the quantification and

correlation between different real damage scenarios and the changes in the signal

resulting from their presence. A numerical model of the structure was used for this

purpose and the effect of four different damage scenarios was investigated. Three of

them represent local damage and one global damage. Following is a brief description

of the numerical model and the obtained results.

2.7.1 Numerical modeling

The finite element model is developed using LUSAS software. Figure 2.27 shows

the developed model highlighting some features, among them the constraints. Table
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2.20 displays the material and the modeling type element for each structural element.

The Young’s modulus used for the steel and concrete, the two materials of which the

structure is composed,is equal to 209 E3 N/mm2 and 30E3 N/mm2. The structural

self weight was taken into account for analyzing the structural vibration modes.

Fig. 2.27 Finite element model

Table 2.20 Model specifications

Structural element Element type Material

Hanger Bar Steel

Chain beam Thick beam Steel

Arch Thick beam Steel

Transverse cantilever Thick beam Steel

Deck Thich shell Concrete

Arch-Chain connection Thich shell Steel

2.7.2 Damage scenarios

Four damage scenarios (DS) were explored in depth. Each of them was simulated

with a reduction in the Young’s modulus of the material of the assumed damaged
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components. In this way, it is possible to consider two phenomena. The first is the

presence of cracks, due for example to the overcoming to the cracking moment owing

to excessive loading. The change of Young’s modulus, affecting the bending stiffness,

will simulate a reduction of the moment of inertia. The second is the presence of

corrosion. As reported in [181, 182], there is a degradation of the Young’s modulus

if the corrosion is presence. In more detail, the pitting phenomenon is particularly

impacting.

Equation 2.3 links the Young’s modulus of the undamaged material (Eud) with

that of the damaged material (Ed) through the factor perc. For each scenario, the

variation (var) of the frequencies used as damage indicators in the subsection 2.4 with

respect to the undamaged scenario was plotted. The results in terms of frequency

variation achieved are also discussed with respect to the three damage levels (LD7,

LD8, and LD9) simulated in section 1.4.

Ed = percEud (2.3)

The first damage scenario is related to the reduction of the stiffness of the arch-

beam chain connection. For the structural type at issue, this type of damage is among

the most significant. This is the first investigated local damage problem. Figure 2.28

highlights the greater sensitivity of the fourth frequency (f4) to this type of damage.

The impact of such local damage is quite low. Only f4 is able to achieve a frequency

shift comparable to the one produced by the lowest level of damage (LD7) simulated

in Section 2.4.

Fig. 2.28 DS1: degradation of arch-beam chain connection
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The second damage scenario (DS2) is conceived as an extension of the previous

(DS1). It involves not only the arch-chain beam connections but also one hanger

per side. The first frequency (f1) shows the same behaviour as in the previous case

(DS1), see Figure 2.29. In this scenario, values of the perc factor ranging from 0.4

to 0.2 allow the fourth and eighth frequencies (f4 and f8) to attain the damage level

LD7. The frequency f8 in the case of almost complete damage (perc equal to 0.05)

reaches the damage level LD8.

Fig. 2.29 DS2: degradation of arch-beam chain connection and near hangers

The third damage scenario (DS3) concerns damage of three hangers located in

the middle of the bridge. As can be seen in Figure 2.30, in this case it was possible

to reduce the extent of the damage (the perc constant varies from 0.5 to 0.9) and

achieve a much higher frequency variation. The fourth frequency (f4) is able to reach

the damage level LD9.

Fig. 2.30 DS3: degradation of central hangers
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The fourth explored damage scenario (DS4) concerns about the deterioration of

all hangers. Thus, it represents damage that is widespread rather than localised. As

can be seen in Figure 2.31, such scenario involves a frequency variation much more

marked. The damage level LD9 is achieved by the fourth frequency (f4) with a value

of perc equal to 0.9 and by the eighth frequency (f8) with a value of perc equal to

0.86.

Fig. 2.31 DS4: degration of all the hangers



Chapter 3

SHM strategies for simply-supported

prestressed concrete railway bridges

assessment1

3.1 Problem definition

The most of railway viaducts built in Italy since the second half of the twentieth

century are prestressed concrete simply supported bridges. Despite the fact that

these are simple structures having verified durability, many degradation phenomena,

chemical (carbonation, salt, and acid actions) and/or physical (freeze-thaw cycle,

overloading, shrinkage) can occur over time, reducing structural safety.

The taxonomy and classification of degradation processes [183] underline the

crucial structural criticalities. Deformation, discontinuity, displacement, loss of

material, deterioration [184], transverse and longitudinal cracking, water infiltration,

defects in concrete along the cable track, and defects in prestressing cables are just

some of the phenomena often occurring in concrete railway bridges. Some of the

them are depicted in Figure 3.1. As can be observed, the degree of deterioration

1Part of the work described has been previously published in:
G. Marasco, G. Piana, B. Chiaia, G. Ventura. Genetic Algorithm Supported by Influence Lines and a
Neural Network for Bridge Health Monitoring. Journal of Structural Engineering. (2022).
G. Marasco, F. Oldani, B. Chiaia, G. Ventura, F. Dominici, C. Rossi, F. Iacobini, A. Vecchi. Machine
learning approach to the safety assessment of a prestressed concrete railway bridge. Structure and
Infrastructure Engineering. (2022)
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can be severe, resulting in significant changes of the beam cross-sections geometric

parameters.

Fig. 3.1 Prestressed bridge damage occurrence: (a) transverse cracks; (b) longitudinal cracks;
(c) traces of humidity with efflorescence on the intrados; (d) cavity on the intrados; (e) cables
with strands interrupted at the intrados; and (f) corroded and broken wires. (Images courtesy
of ANAS Gruppo Ferrovie dello Stato Italiane.)

Some structural components of the deck are more prone to deterioration based

on the source of damage. The corrosion phenomena, for example, is more severe and

widespread in some sections near elements (e.g., joints, niches, and ducts) where

both water and deicing salts are present. To determine which parameters and sections

must be monitored, a structural analysis is required. The type, position, and entity of

the damage will influence the failure structural modes [185]. Shear failure mode can

occur in the worst-case scenario [186], resulting in sudden and brittle collapses.

The challenge that rail infrastructure italian owners face is characterized not

only by the high level of attention required by such infrastructures, especially those

designed for the passage of high-speed and capacity trains due to the obvious

catastrophic consequences that would emerge if malfunctions occurred, but also

by the large number of such bridges that require control. As a result, standardized
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techniques that are both valid for the whole typology and economically viable must be

developed. For an effective data-driven decision-making operation and maintenance,

(O&M) such techniques should have high precision and low detection times [54]. As

stated following, the monitoring architecture and acquisition processes have been

created to suit both safety and cost-effectiveness requirements.

The structure under investigation, as well as two approaches that have been

proposed, will be discussed following. Both have involved static data and have

been designed to be complementary. The first has been developed for a long-term

monitoring (Section 3.2); the second for a periodic one (Section 3.3).

3.1.1 Description of the structure

The Oglio Viaduct, a railway bridge near the A35 BreBeMi highway in northern Italy,

has been the subject of the investigation. It allows the railway line to travel above the

homonymous river. It is part of the Brescia-Treviglio high-speed-high-capacity rail

route, which is one of the Mediterranean Corridor parts that will connect Western

and Eastern Europe. It is 1287 meters long and is composed of 43 spans of around 30

meters each. Figure 3.2 depicts a general view of the bridge. Each bridge span is a

grillage with four longitudinal 2.5 meter high prestressed beams and five diaphragms

that are simply supported by the piers. Two overhangs with service paths may be

seen on the top slab.

Fig. 3.2 General view of the Oglio Viaduct

The viaduct piers have a circular shape with a diameter of 4 meters and are

connected at the top with a pier cap on which the spans rest. To avoid scouring at the
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foundation, the foundation pile caps are buried. Figure 3.3 shows an elevation view

of the span between viaduct piers 3 and 4.

Fig. 3.3 Elevation view of the Oglio viaduct

3.2 Data anomaly detection for a continuous condition

assessment

To face the problem described in the Section 3.1, a data anomaly detection method-

ology for a continuous condition assessment has been proposed. The use of a

monitoring capable of capturing potential structural anomalies through parameters

recorded at a non-high frequency is part of an economically viable, widely deployed,

reliable, and repeatable approach to continuous infrastructure assessment.

Data anomaly detection and condition assessment are interconnected engineering

concept. In the field of anomaly detection by data analysis, many approaches can be

found in the literature. A brief survey of the approaches proposed in the literature

to date is given here to highlight the contributions in this field, their strengths

and limitations, especially with respect to the case study addressed here. It’s worth

highlighting some recent and interesting research using dynamic features for anomaly

identification and condition assessment [187–189]. They have been challenged with
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detecting six different forms of anomalous data patterns (e.g., missing, mirror, outlier,

square, trend, and drift). The first utilizes a Random Forest classifier with a "Shapelet

transform," the second uses GAN and CNN, and the third employs CNN for image

classification. All of the approaches achieve high accuracy. Nevertheless, they

may not be appropriate in all cases (e.g., different structural typologies, materials,

and recorded parameters). Catching drift, for example, will not suffice in the case

discussed in this chapter because the occurrence could be caused by both anomalous

phenomena and not. In addition to studies performed in a dynamic field, the literature

includes research based on static measurements, albeit on a smaller scale. [57].

[190] presented a system that uses high frequency recorded strain data to catch the

passage of vehicles. As a baseline for structural assessment, it establishes live load

stresses, load distribution factors, and neutral axis position in healthy conditions.

This intriguing approach is not applicable to the case study discussed here, because

it optimizes and stores data over time using a much lower sample rate. In a similar

manner, for a steel girder assessment, [191] proposed to capture the structural

response to load passage rather than the one to environmental conditions. Time

series strain data, on the other hand, has been utilized to map the strain responses

with temperature. For a tied arch bridge built 14 years before the monitoring system

installation, [120] has utilized a linear regression model. There are no time-delayed

structural phenomena, and no pre-processing approaches are needed, as in the current

investigation. Correlation models between temperature and static stresses of a steel

truss arch bridge have been used to define the healthy condition for damage detection

goals in [192]. Time-delayed phenomena are also negligible in this investigation,

and there are no methods necessary to ensure data repetition. The use of CV and

ML-based methodologies must be included for a complete up-to-date summary [24].

Although they are capable of accurately detecting multipattern anomalies in SHM

data, their applications are limited due to the existence of extreme condition and

damage data.

The proposed methodology and the monitoring architecture exploited to solve

the specific issues highlighted by the case under study, representing the structural

typology to which it belong, will be illustrated in the following sections.
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3.2.1 Monitoring architecture

Rete Ferroviaria Italiana (RFI) has devised and implemented a long-term structural

health monitoring system for the Oglio Viaduct. Its goal is, in particular, to use

static measurements to show the bridge’s temporal evolution under environmental

conditions and to issue warnings for abnormal values of recorded parameters. It is

not intended to capture the effects of train transit because its aim is not to record

the structural response associated with operation loads, which would necessitate a

high signal sampling rate. To measure important characteristics in different areas

of the structure, sensors such as strain gauges, displacement meters at supports,

clinometers, surface and air thermometers have been utilized. In the hierarchical

monitoring scheme depicted in Figure 3.4, they are labeled level 4. The UAD (Data

Acquisition Unit), the PPF (Fixed Peripheral Places), and the PCS (Satellite Central

Place) are the higher levels of the hierarchy.

Fig. 3.4 Hierarchical monitoring architecture

After the system installation, the recorded data from sensors has been compared

in real time to expected values determined by structural monitoring experts, and

design thresholds (DT) have been established. The further step, developed and

presented in this chapter, is the definition of correlation models to outline the real

structural behaviour to define data-driven undamaged condition thresholds (UCT).

The structure, which has been in operation for nearly six years, was tested using

modular railway trains with a maximum axle load of 40 tons to simulate the maximum

action that the viaduct can withstand. Moreover, diagnostic trains traveling at 300
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km/h were used to test the railway superstructure. The viaduct is periodically

inspected in the railway superstructure with diagnostic trains and visual inspections

throughout its life. Evidence from periodic and supplementary checks is fed into

the Domus-Inrete 2000 information system, which also monitors and point out the

structural state. The data recorded on the structure has been correlated with an

healthy structural condition due to the lack of the observed structural anomalies.

The data used to create the correlation models, see Figure 3.5, are related to sensor

places in two specific meaningful sections: A-A (midspan) and B-B (support).

Fig. 3.5 Network of sensors

The symbols used to label the sensors are listed in Table 3.1.
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Table 3.1 Symbols

Symbol Sensor

T Thermometer (temperature of the material or of the air)

E Strain gauge

CL Clinometer

MGB Biaxial support displacement

AMB Single-base Measurer of settlement

The main features of the employed sensors is provided below. As regards the

strains measurements, vibrating wire strain gauges that may be mounted using

mounting blocks with rebar-bolts on concrete surfaces have been used. In addition to

being cast into concrete structures, such immersing strain gauges are also provided

as "shot crete" models with movable tensioning collars. When pulled, a tensioned

wire vibrates at its resonance frequency. The strain in the wire is linked to the square

of such a frequency. The vibrating wire strain gauge is made to keep a wire in

tension between two end blocks that are anchored to the structure. The wire is pulled

by an electromagnetic coil assembly, which subsequently sends a frequency signal

back to the readout devices. The tension of the wire and its resonance frequency

are affected by the structure’s deformation, which changes the distance between

the two end blocks. The transmitted signal is then scaled to microstrain units.

Besides, a built-in thermistor in the strain gauge offer temperature information for

understanding potential thermal effects. Table 3.2 summarize some of the main

characteristics of such sensors.
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Table 3.2 Technical specifications of strain gauges

Description Value

Resolution <±1.0µε

Coil resistance (nominal) 150 ohm

Embedded thermistor type NTC (Negative temperature coefficient)

3kΩ

Embedded thermistor accuracy ±1C (±0.5C within 0-50 °C)

Power supply Automatically selected by readout (max

40V)

Coefficient of thermal expansion 12×10−6/°C

Temperature range -20°C+80°C

Max. cable length to logger 1000 m

As regards temperature measurements, thermometers encased in an impact-

resistant stainless steel body to be immerged in concrete have been used. Table

3.3shows their technical specifications.

Table 3.3 Technical specifications of thermometers

Description Value

Resolution 0.1°C

Material stainless steel

Temperature range -30 °C+80 °C with standard cable

IP Class IP68 up to 2.0 MPa

As regards the rotations, MEMS analogue surface clinometers have been utilized.

They are instruments designed for point inclination measurements in civil works

requiring high performance. The used clinometers boast exceptional performance

both in terms of accuracy and in terms of stability and thermal variation. Table 3.4

reports their main technical specifications.
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Table 3.4 Technical specifications of clinometers

Description Value

Resolution 0.01 % FS

Sensor mechanical bandwidth

Offset temperature dependency

(from -20°C to +70°C)

±0.003°C/C

Power supply from 18 to 30 Vdc

Temperature operating range (from -30 °C to +70 °C)

Finally, as regards the joint expansion, crackmeters have been used. They are

designed to track motions across surface joints or cracks, primarily in concrete

buildings or rocks. A vibrating wire or potentiometer displacement transducer is

what makes up a crackmeter. It is enclosed in a stainless steel telescopic housing

with two fixing connections. Such connections have self-lubricating ball joints that

enable lateral movements of up to 10 degrees in orthogonal planes (Y-Z axis) without

affecting how the jointmeter functions.

3.2.2 Methodology

In the work presented in this chapter the sensor data have been analyzed using the

novelty detection approach [193] for data anomaly detection. Two factors support

the decision to perform the analysis using such method. First of all, no real data

about the structural damage is available. Second, the development of damaged

structural data through simulation can be unreliable in terms of the types of potential

structural anomalies. Indeed, if a classification model is trained to recognize only

some types of anomalies, it may be unable to detect others. As a result, the models are

designed to detect anomalies of any typology, and damage types are not classified.

The used method is based on training machine learning regression models on a

data set related to health conditions in order to determine the correlations between

parameters designated as independents (inputs) and the ones designed as dependents

(outputs). The independent and dependent parameters are chosen based on physical

cause-and-effect relationships. These models are validated using another set of data

for the undamaged structure (the error validation set), after the training. The model

predicts the outputs starting from the inputs of such a dataset, and the error (residual)
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can be calculated as the difference between the measured and predicted outputs.

The window of error dispersion is thus characterized by its mean (µ) and standard

deviation (σ ). The alarm threshold (UCT) are defined by the expression µ ± kσ ,

where k represents a controlling parameter. Such thresholds, produced using the

methods discussed above, reflect the intact structural status and are highly dependent

on the parameter k, whose value is determined from a range of statistically significant

values depending on the type of problem. The range of k values used ranging from 2

to 3. Values out of ªhealthy condition error rangeº are considered anomalies. If the

residual had been used as a damage index, as in the standard signal reconstruction

approach, there would be a lot of false positives. The moving median of the residuals

with respect to the seven preceding days has been used to solve this problem. With

such method, an anomaly is identified if at least 50% of the signals in the previous

week show an error that falls outside the threshold. Seven days is deemed a long

enough period to filter out false alarms but short enough to report timing anomalies.

Under certain conditions, this approach is a highly effective filter for reducing false

positives when residuals oscillate in sign beyond the stated thresholds. Such damage

index smooths the peaks of residuals, making structural health monitoring more

helpful for real use and lowering maintenance costs.

It’s worth mentioning the pre-processing procedure, which relies on z-score

normalization with regard to a moving time window. The min-max, z-score, and

decimal scaling are three of the most frequent data transformation normalization

methods. The z-score method stands out as it figures out the issue of not knowing

the series’ minimum and maximum values, but it can only be used on stationary

series. Most structural quantities time series are non-stationary, as in other areas such

as finance and economics [194]. This behavior is amplified for specific materials,

such as concrete, which show delayed phenomena (e.g., fluage). A sliding window

approach has been used to successfully tackle non-stationary problems. In this

scenario, the input and output time-series values (v) have been normalized using the

formula 3.1, where (µ) and (σ ) and are the mean and standard deviation derived on

the data from the preceding temporal window, respectively. Following the use of the

normalized value v’ in the machine learning algorithm, the data have been rescaled

in their original range 3.2 using an inverse z-score normalization post-processing

technique.
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v
′
=

v−µ

σ
(3.1)

v = σv
′
+µ (3.2)

3.2.3 Correlation model

Three regression correlation models have been created based on data acquired during

the initial service years of the structure to assess such main aspects: unloaded

deck strains, pier displacements and rotations, and deck-support displacement in

response to environmental variables. For each problem, many machine learning

algorithms (e.g., Extreme Gradient Boosting Machine, Multi-Layer Perceptron,

LSTM, Bayesian Ridge Regressor) have been investigated. Due to the continuous

nature of the data, the problems are formulated as regression models. They are

designed to connect inputs and outputs recorded at the same time rather than forecast

outcomes at later times. Those that produced the best regression model on the

error validation set in terms of Mean Absolute Error and Symmetric Mean Absolute

Percentage Error have been chosen and displayed in the following subsections. For

two of the three tasks, such methods have been shown to be remarkably successful

(subsection 3.2.4 and 3.2.5).

Following is a brief overview of the models that have produced the best outcomes.

The Extreme Gradient Boosting Machine (XGBoost) is the first model. The term

’boosting’ refers to a set of methods that help weak learners become strong, as

introduced in the subsection 1.4.2. Boosting is an ensemble strategy for improving

any learning algorithm’s model predictions. The approach is non-parametric, there-

fore it can handle huge, complex datasets without imposing a complex parametric

framework. Gradient Boosting works by adding predictors to an ensemble in a

sequential order, each one correcting the preceding one and attempting to fit the new

predictor to the residual errors created by the prior predictor. XGBoost is a special

version of the Gradient Boosting approach that uses the strengths of the second order

derivative of the loss function, L1 and L2 regularization, and parallel computing to

give better approximations. The Multi-Layer Perceptron (MLP) is the second model.

McClelland and Rumelhart proposed it in 1986 [195]. It’s a type of artificial neural

network, that is made up of artificial units accepting several inputs from data or other
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neural network units, and that can model exceedingly complex functions. Equation

3.3 describes the process that occur to each unit. The output (y) of the MLP neuron

is obtained after a weighted sum plus bias (Wis the set of weights in the layer and b

is the bias vector) and the application of an activation function (f ).

y = f (Wx+b) (3.3)

The output is subsequently transmitted to another unit in the subsequent layer

of the network. The network’s weights and thresholds must be tuned to reduce the

network’s prediction error defined by the loss function. The training methods, which

employ stochastic gradient backpropagation as an iterative methodology, play this

role.

3.2.4 Assessment of the midspan strain of the unloaded deck

Problem definition and data analysis

The evaluation of the strain state of the deck is critical for avoiding some struc-

tural issues. Deformations are, in fact, an indication of likely cracks or pretension

losses. The parameters recorded in the midspan section have been used to create the

correlation model for the healthy condition 3.5.

Table 3.5 Input and output parameters for correlation model

Input Output

Air temperature (T1, T2, T3)

Strains at

intrados

of the

midspan

section

MeanET = mean [T01, T02, T03, T04]

MeanIT =mean [T7, T8, T11, T12]

TotG=MeanET -MeanIT

EG= mean [T01, T02]-mean [T7, T8]

IG=mean [T03, T04]-mean [T11-T12]

[T 01−T 02]

[T 03−T 04]

[T 7−T 8]

[T 11−T 12]

Additional temporal features
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The definition of independent parameters has been the first stage in developing a

correlation model that connects strain values to factors that produce them in an un-

damaged structural status, based on the designed monitoring system. Temperature,

temperature difference (gradient), pier rotations, and train transit all contribute to

the strain data. The last element has not been considered for a multitude of rea-

sons. High-speed train strains are characterized by a high frequency and a smaller

magnitude than those induced by absolute temperature and temperature gradient

[192]. Aside from that, the monitoring system, as pointed out in Section 3.2.1, is

not designed to measure the effects of train passage, as records are made every 2

or 4 hours. The influence of pier rotations has also been overlooked. This is due

to the limited amount and quality of available data. There are three categories of

input: raw, processed, and additional. The term raw refers to unprocessed sensor

readings (e.g., air temperature). The term processed refers to the result of combining

several raw inputs (e.g., mean sensor data). Additional refers to features that are not

directly related to sensor readings. Additional temporal features are the hour of the

day (Equation 3.4 and 3.5) and the week of the year (Equation 3.6 and 3.7) when the

data were recorded.

hs = sin

(

2π
h

24

)

(3.4)

hc = cos

(

2π
h

24

)

(3.5)

ws = sin
(

2π
w

52

)

(3.6)

wc = cos
(

2π
w

52

)

(3.7)

Those properties are encoded using sine and cosine functions of the values to

ensure time data continuity and periodicity. The hours (h) values are in the range

[0-24[, whereas the weeks (w) values are in the range [1-52]. The model uniquely

identify such two parameters by applying Equations 3.4 and 3.5 to hours and Equa-

tions 3.6 and 3.7 to weeks. Figure 3.6 shows the sine and cosine values for the 24

hours of the day, as well as an example of the values (hs and hc) generated for a

chosen hour (e.g., 10 a.m.).
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Fig. 3.6 Functions for getting the additional temporal features (e.g., hour of the day). a Sine
function; b Cosine function

Only raw outputs have been used as outputs of the system. The input-output data

trends are shown in Figure 3.7.
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Fig. 3.7 The correlation model’s input and output parameters. a Temperature extrados; b
Temperature intrados; c Air temperature; d Strain

It is helpful to look at the change of the strain over time from a structural

standpoint. Seasonal changes cause significant time fluctuations, as predicted. Fur-

thermore, the seasonal impacts of the thermal inertia of the deck (for example, the

effects of a hot summer are reflected until early autumn periods) are observable

because strains follow a sawtooth wave pattern. In fact, the behavior of the strain

is roughly opposite that of the temperature, but during time intervals in which the

temperature is sufficiently high (summer), the reduction of strains manifests itself

as a very modest downward trend, practically constant. As a result, the observed

strains in autumn are lower than those recorded in spring at the same temperature.

This is why the temporal features, which indicate the hour of the day and the week

of the year, have been provided as inputs of the correlation model. Of course, there

are other phenomena that occur over time: shrinkage and creep [196–198]. They

justify the downward trend of the strains. Other complementary effects, such as
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those caused by non-ideal mobile supports and sensor drift over time, should also be

addressed, but these are typically difficult to determine.

Model and pre-post processing operations

A z-score normalization for input and output time-series with respect to the previous

60 days has been executed as a pre-processing operation. The normalization period

has been set to account data seasonality. This has allowed the data to obtain repetition

in time. As seen in Figure 3.8, the moving window normalization has led the creation

of a stationary time series.

Fig. 3.8 Signal E15. a original series; b normalized series

Then, as regression models, many supervised learning techniques have been used.

The best results have been attained by two of them (Extreme Gradient Boosting

Machine and Multi-Layer Perceptron). The Extreme Gradient Boosting model [199]

has been implemented using decision trees with a maximum depth of 6. To improve

model accuracy, the Gradient Boosting approach has been utilized with a learning

rate of 0.3. The Multi-Layer Perceptron, on the other hand, has been made up of two

hidden layers, each with 30 and 20 neurons. As a criterion, the Mean Square Error

(MSE) has been used. The Adam algorithm has been utilized as an optimizer. The

learning rate has been set to 0.001 and the maximum number of epochs has been
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set to 400, with a batch size of 16. After that, the data have been rescaled in their

original range using an inverse z-score normalization as a post-processing operation.

Figure 3.9 shows the strain values over time and the whole set being divided into

three parts: train (50 percent), validation error (20 percent), and anomaly test (30

percent).

Fig. 3.9 Strain. Signal E15. Subdivision into train, validation error and test anomaly set

After the model has been trained, the validation error set has been used to

compute the mean and standard deviation of the residual, which have been then used

to establish the healthy condition error range using UCT thresholds. The residual is

calculated as the difference between the measured (xr) and predicted (xp) outputs

after the post-processing step. Table 3.6 shows the values of three indices calculated

from the validation error set for both the Extreme Gradient Boosting Machine and

the Multi-Layer Perceptron in order to assess model accuracy.

MAE (Mean Absolute Error), SMAPE (Symmetric Mean Absolute Percentage

Error), and R2 (Coefficient of determination) are the indices employed . They have

been used to determine which signals have been better forecasted and to measure

the reconstruction accuracy. Low MAE and SMAPE values, as well as high R2, are

related with better model performance.

Equations 3.8, 3.9, and 3.10 provide their formulations.

MAE =
1
n

n

∑
1

abs(xp − xr) (3.8)
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SMAPE =
∑

n
1 abs(xp − xr)

∑
n
1(xp + xr)

(3.9)

R2 = 1− ∑
n
1(xp − xr)

2

∑
n
1(xr − x)2 (3.10)

The predicted value is xp, the measured (actual) value is xr, and the average of

the values is x.

The Gradient Boosting approach has achieved higher results on average, by

combining numerous decisional trees, in comparison to the Multi-Layer Perceptron

and other regression models (e.g., LSTM, Bayesian Ridge Regressor). Due to the

general poor outcomes, the latter ones were not included in this chapter.

Table 3.6 Models evaluation metrics (validation error set)

MLP XGBOOST

Sensors MAE SMAPE R2 MAE SMAPE R2

(µε) (%) (-) (µε) (%) (-)

E10 3.560 1.046 0.794 3.022 1.020 0.965

E11 2.956 0.844 0.667 2.217 0.770 0.951

E12 1.744 0.613 0.764 1.545 0.610 0.97

E15 1.829 0.558 0.701 1.879 0.600 0.966
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Fig. 3.10 Scatter plot E15. (validation set)

The following investigations have been concentrated on the sensors with a Co-

efficient of Determination near to 1 (greater than 95 percent ). Figure 3.10 shows

a scatter plot of predicted and real values from one of these sensors (E15), which

helps to display the accuracy of the prediction.

Simulation of anomalies and damage identification

To evaluate the damage detection ability of suggested method, simulated anomalies

have been used. They have been created by simulating sensor values with a given

offset. In the first instance, the order of magnitude of the range of variation of the

anomalies was estimated by considering a widespread deterioration of the materials

that may be accentuated by prestressing losses that could bring the intrados into a

tensile state. This offset starts from zero and increases linearly in time up to the

given value in three considered different time spans (168h, 336h, and 720h). As a

result, each anomaly is defined by two parameters: its amplitude (offset) and the

time it takes to reach that offset. The dependability of the proposed approach has
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been tested by changing the starting point of the anomaly. A total of fifteen points

from the test anomaly set have been used.

The anomaly plot (Figure 3.11 a) depicts the imposition of an offset equal to 10

µε on the signal of the sensor E15 achieved in 168 hours. The black dot represents

the beginnings of the anomalous signal. Figure 3.11b zooms in on the test set

to illustrate the biggest discrepancy between the signal and its forecast near the

anomaly’s beginning point. The residual plot (Figure 3.11c) shows the trend of the

residual (red line), the damage index (median), and the "healthy condition error

range" (orange band) for the test anomaly set. The residual error has a Gaussian

distribution with a mean close to zero, and is stated as the difference between the

measured output and the predicted one after the post-processing operation. To

establish the extremes of healthy range (UCT), the value of k has been fixed to two

for the sensors E10, E11, E12, and E15. The blue dashed circle in the residual graph

indicates the identification of the anomaly. The damage index in that area exceeds

the healthy condition error range’s control limit.
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Fig. 3.11 a Anomaly plot; b Test set; c Residual plot
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Tables 3.7 and 3.8 summarize the findings in terms of detected anomalies, which

are expressed as a function of their amplitude and time period, using a ratio between

the number of detected anomalies and the total number of evaluated anomalies (15).

Table 3.7 Percentages of detected anomalies. Damage detection range definition: [80%,
100%]. [40%,80% [, [0%-40% [. Damage detection colours definition: green, yellow, red.

E10 E11

Amplitude Peak reach time Amplitude Peak reach time

[µε] [h] [µε] [h]

168 336 720 168 336 720

2 0% 0% 0% 2 0% 0% 0%

10 53% 46% 40% 10 100% 80% 67%

15 93% 80% 60% 15 100% 100% 100%

20 100% 100% 87% 20 100% 100% 100%

Table 3.8 Percentages of detected anomalies. Damage detection range definition: [80%,
100%]. [40%,80% [, [0%-40% [. Damage detection colours definition: green, yellow, red.

E12 E15

Amplitude Peak reach time Amplitude Peak reach time

[µε] [h] [µε] [h]

168 336 720 168 336 720

2 0% 0% 0% 2 0% 0% 0%

10 100% 100% 87% 10 93% 87% 73%

15 100% 100% 100% 15 100% 100% 93%

20 100% 100% 100% 20 100% 100% 100%

The approach successfully highlights anomalies corresponding to about 10% of

the average signal value. Small anomalies that evolve over a long period of time

are clearly difficult to recognize. It’s worth noting that, aside from the ability to

detect anomalies, there are no false positives. With the exception of E11, no false

positives were found. There is a systematic inaccuracy for E11, most likely due to

significant irregular local volatility (heteroscedastic time series). Starting from the

results, it is possible to classify the damage detection capability as: good, mediocre,

or poor (see Tables 3.7 3.8) The tables caption provide the percentage range and

color corresponding with each of these categories.
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The capacity of the undamaged condition-based thresholds (UCT) to detect

early-stage anomalies has been proved to be better to the design-based thresholds

(DT). These latter are determined by factors stemming from the expected structural

behavior. The design alert values are set to 100% of the calculation value chosen as

the limit based on the maximum stresses during the service phase. The alarm values

are the 120% of such limit value. For the sensors E10, E11, and E12, the design

specifies alert and alarm thresholds of 103.5µε and 124.2µε , respectively. For the

sensor E15, the such thresholds are set to 230.25 µε and 276.3µε . The improvement

in detection capability achieved using this approach is evident. Ideed, the detected

anomaly by the UCT is of the order of 10µε . Figure 3.12 turns be out very useful

to compare the anomaly detection capacity of the two methods. An anomaly (violet

signal), characterized by a 15 µε offset and a 168-hour time span, is imposed on

the signal captured by E15. As can be seen, the red and yellow horizontal lines

that show the design-based alarm and alert levels are beyond the disturbed signal.

Therefore, they would not have detected such anomaly. The damage index used for

the second approach, instead, exceeds the UCT thresholds, allowing the anomaly to

be detected. As a result, the data-driven strategy is much more successful.

Fig. 3.12 Design thresholds (DT) and undamaged conditions thresholds (UCT)
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3.2.5 Assessment of pier rotations and joint expansion

Problem definition and data analysis

Understanding the occurrence of unusual pier movements and anomalous motions in

the deck plane requires a thorough examination of pier rotation and deck-support

displacement. The development of correlation models for the healthy condition

have begun with the assumption that clinometers and measurements of deck-support

displacement reflect the temperatures in an unloaded structural condition.

The average air temperature, the rotations recorded by the clinometers, and the

hour of the day corresponding to the recorded parameters are all used as inputs in

these models. In more detail, the acronyms CL CHA and CL CHB correspond to

rotation in the longitudinal and transverse directions, respectively, on clinometers

CL1 and CL2 (Figure 3.5). Due to poor signal quality, recordings of channel CL1

CHA were not considered as model input.

Figure 12 depicts the longitudinal rotation recorded by the CL2 CHA sensor.

As output data, the correlation models use the data collected by the biaxial joint

gauges.

Fig. 3.13 Longitudinal rotation CL2 CHA: original (blue) and filtered (orange) signal

Table 3.9 shows the parameters that have been used to create the correlation

models in the healthy state.
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Table 3.9 Input and output parameters for correlation model

Input Output

Mean air temperatures (T1, T2, T3)

MGB1L

or

MGB1T

CL1 CHB

CL2 CHA

CL2 CHB

Additional temporal features

Figure 3.14 shows the time trend of the signals from the sensors MGB1L (longi-

tudinal) and MGB1T (transversal), as well as the three-part partition of the dataset. It

should be noted that from an engineering point of view the two sensors are different.

The first measures the displacement of the deck to the support in the direction of the

viaduct axis. The second one in the transverse direction. The latter shows measure-

ments with a very small range of variation due to the layout of the constraints on the

internal beam supports which block transverse displacements.

Model and pre-post processing operations

A data cleaning procedure has been performed on the data to remove outliers in the

signals (see Figure 3.13). Subsequently, for input and output time-series, z-score

normalization based on the previous 60 days has been executed as pre-processing

operation. Subsequently, several regression models have been utilized. The Ex-

treme Gradient Boosting Machine and the Multi-Layer Perceptron were among

the best-performing ones. To optimize the findings, two sub-models related with

the Multi-layer Perceptron have been used to predict the signal recorded by the

transversal sensor (MGB1T) and the longitudinal one (MGB1L). The use of different

parameters for such two sensors is the mirror of their distinct characteristics. The

learning rate and the maximum number of epochs are two hyperparameters that

distinguish these two sub-models. They have been fixed to 0.001 and 400, and

0.002 and 100 for the transversal and for longitudinal sensors, respectively. The

output data have been subject to an inverse z-score normalization, as post-processing

operation, after using the regression model. Table 3.10 compares the two models

with better metrics (the corresponding sub-models of the MLP and the Extreme

Gradient Boosting Machine).
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Table 3.10 Models evaluation metrics (validation error set)

MLP XGBOOST

Sensors MAE SMAPE R2 MAE SMAPE R2

(mm) (%) (-) (mm) (%) (-)

MGB1L 0.003 0.042 0.0666 0.666 0.075 0.533

MGB1T 0.002 1.435 0.806 0.002 1.875 0.903

The Multi-Layer Perceptron performs better in this scenario.

Simulation of anomalies and damage identification

The methodology to set the healthy condition error range, to simulate the anomalies

and to assess the ability to detect them in terms of percentages has been the same

described in the subsection (3.2.2) and subsequently deepened and applied in the

subsection (3.2.4). The value of k used to fix the healthy error range boundaries,

namely the UCT, has been set equal to 2.5 for MGB1T and 3 for MGB1L. This is

owing to the ability of the system to detect little anomalies, albeit a larger healthy

condition error range that allows for the minimization of false positives. There were

zero false positives for both sub-models utilized for the problem at hand. Table 3.11

displays the results in percentages of detected anomalies as a function of amplitude

and time span. The findings indicate a good, mediocre, or poor ability to detect

damage. The table caption provides the percentage range and color corresponding

with each of these definitions.

Table 3.11 Percentages of detected anomalies. Damage detection range definition: [80%,
100%]. [40%,80% [, [0%-40% [. Damage detection colours definition: green, yellow, red.

MGB1T MGB1L

Amplitude Peak reach time Amplitude Peak reach time

[mm] [h] [mm] [h]

168 336 720 168 336 720

0.005 60% 47% 0% 0.008 80% 80% 80%

0.008 100% 100% 87% 0.01 100% 100% 80%

0.01 100% 100% 87% 0.04 100% 100% 100%
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Fig. 3.14 Displacements. Subdivision into train, validation error and test anomaly set a
Signal MGB1T; b Signal MGB1L

The results, for both MGB1T and MGB1L, have been good. MGB1T produces

successful findings from an anomaly with an amplitude of 0.008 mm, which is

around 10% of the mean value of the signal. The damage detection ability for the

MGB1L sensor is substantially higher, as the findings are already acceptable for a

0.008 mm amplitude anomaly, which is around 2‰ of the average signal. Even if

we just assumed the damage detection ability to be reliable for anomalies with an

amplitude of 0.04 mm or higher for MGB1L and 0.01 mm for MGB1T, it would turn
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out to be much higher than the one depending on the design threshold (DT). In fact,

the alert and alarm levels for MGB1L and MGB1T are respectively ± 170.9 and ±
205 millimetres and ± 60 and ± 72 millimetres. In this case the alert values for the

design thresholds are the joint excursion values calculated in the two directions in

the presence of an earthquake. The alarm thresholds are 120 percent of these values,

as in the preceding scenario.

3.3 Genetic algorithm supported by influence lines

and a neural network for bridge static periodic

assessment

The methodology presented in this Section investigates the use of fewer sensors/measuring

points to achieve satisfactory results in damage identification. Structural evaluation is

the result of periodic monitoring in which few static parameters are measured when

an external load is in various positions over the structure. Analyzing measurements

taken at different times under the same conditions can reveal information about

potential structural changes. The study presents a hybrid technique using a genetic

algorithm, influence lines, and a neural network to tackle the inverse problem of

localization and severity estimation of the damage. In the first phase, influence lines

are used to obtain information about the damage position [200]. Then, a genetic

algorithm (GA), which is at the base of the technique, estimates bending stiffness

along a discretized structure by means of static characteristics recorded at a few

points (i.e. midspan deflections and end rotations). The choice to use of a limited

number of parameters, distributed to capture potential changes both in the middle

of the beam and near the supports, is due to the optimization perspective in which

the methodology has been designed. An increase in parameters would mean greater

methodology redundancy and reliability but also higher costs and calculation time.

The information obtained in the first phase has main benefits. First, it decreases

the number of design variables of the algorithm and, as a result, the computational

time. Second, it increases the accuracy of the GA’s solution by allowing a properly

trained neural network to determine the optimal values for the GA’s cost function

coefficients. The adoption of a cost function made up of components with variable

sensitivity to damage locations allows power coefficients to be used to weight the
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various contributions. The method has been applied to a simply supported beam

with damage scenarios characterized by localized reductions in bending stiffness

(approximately from 5 to 40%) to first validate the overall strategy (influence lines,

genetic algorithm, and neural network) to an elementary test problem. The bend-

ing stiffness reduction can be associated with more or less severe damage caused

by corrosion (especially in the sections near the joints where water infiltration is

more present), cracks (most likely in the mid-span section), defects in the concrete

along the development of the cable, defects in the pre-tensioning cables, and loss

of material. The effectiveness of the suggested approach with the use of real values

has been verified by using data from the structure under consideration as model data.

Numerical experiments have been also carried out to test the technique when the

beam length and geometric parameters are altered.

In this preliminary study, only longitudinal flexural behavior has been inves-

tigated. The single longitudinal beam-slab system (interior beam in Figure 3.15)

has been considered for the analyses. Its undamaged bending stiffness is EI =

9.407 1010Nm2 (Young’s modulus E = 36.2809Nm2, area moment of inertia I =

2.5934);the length is L= 27.8 m.
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Fig. 3.15 Pile elevation and a cross-section of a bridge displaying the chosen beam (cm)

In the computations, a vertical traveling force of 294.2 kN has been used. It

corresponds to the weight of a high-speed train bogie, giving the test a realistic force

value. A succession of traveling forces can be readily added to the method (train

carriage).

3.3.1 Methodology

A finite-element model (FEM), with the beam discretized using NE=27 beam ele-

ments (see 3.16), has been utilized to examine the damage scenarios. The structural

problem has been addressed using a displacement approach based on an exact two-
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node beam stiffness matrix that matches the two-node Euler-Bernoulli beam finite

element. As nodal forces are taken into account, the solution in terms of nodal

displacements is correct; the deflection curve is well defined because element length

is 1/27th of total beam length. Twenty-seven elements have been chosen to consider

damage extending over a distance of approximately 1 m. Such extension turns out to

be realistic, as shown in Figure 3.1. The chosen reference quantities have been the

midspan deflection and rotations at both supports. To assess structural conditions,

values of bending stiffness of damaged elements considered unknowns have been

determined using measured and model-computed quantities.

Fig. 3.16 Simply supported beam discretized by 27 elements. Red = generic couple of
damaged elements

The "measured" parameters (mid-span deflection and end rotation), which should

be derived from in-situ measurements in reality, have been generated from the FEM

model associated with the imposed damage scenario; they are input data. The FEM

model, which utilizes the trial bending-stiffness values from the genetic algorithm,

have provided the model-computed quantities (midspan deflection and end rotation).

Therefore, the unknown quantities can be found by seeking for values that minimize

the difference between the measured and computed quantities. Figure 5.3 shows a

flowchart that highlights the structural assumptions and the essential steps of the

suggested methodology.
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Fig. 3.17 Damage assessment process flowchart

Damage localization: influence line method

Influence lines provide the value of entities (e.g., shear force, bending moment,

support reaction, displacement, and rotation) for all positions of a traveling unit load

at a certain position in a structure. Damage in beams can be monitored and localized

by means of them [201–203]. For instance, one considers the displacement influence

lines at the midspan of the damaged (ηm(x)) and undamaged (ηm(x)) structures, i.e.

the midpoint displacement in the two structures when a traveling unit transverse

force acts at section x. As a result, at section (x = xd) where damage is present



102

SHM strategies for simply-supported prestressed concrete railway bridges
assessment

, the difference δ
η
m (x) = abs(ηm(x)−ηm(x)) will be greater. Likewise, rotation

or curvature influence lines can be exploited [202]. One considers a 10 m long,

simply supported beam with intact bending rigidity EI = 1Nm2, as an illustration.

One assume the beam divided into 20 elements, each of which is 0.5 m long, and

that damage is occurring in the fifth element from the left, resulting in a 10% drop

in bending rigidity, EId = 0.9Nm2. For both undamaged and damaged conditions,

influence lines can be estimated using a traveling unit transverse force.

Figures 3.18 a and b depict, from left to right, the influence line for the damaged

structure, for the integer one, and the difference between them as functions of

the abscissa (load position), for the midspan displacement and left support rotation,

respectively. The figure shows the highest values of the δ
η
m (x) and δ

ϕ
A (x) (highlighted

with red diamond) in the area of the damaged element.

Fig. 3.18 Example of the influence line approach for identifying damage: (a) midspan
deflection; and (b) left support rotation

Estimation of damage severity with genetic algorithm supported by a neural

network

The genetic algorithm (GA), a Darwinian-based optimization method introduced in

the Section 1.4.1, has been exploited for the damage severity estimation.
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In this research, individuals have been defined by the bending stiffness of the

elements identified as being damaged by the influence lines. Once the position and

number of damaged elements are determined, the genetic algorithm computes the

bending stiffness of the damaged elements by means of the static measurements.

Roulette wheel selection and uniform crossover have been the chosen operators

(qualitative parameters) in this investigation. The qualitative parameters have been

established in the manner outlined subsequently.

The cost function of the GA is driven by static parameters (midspan displacement

and support rotations). The use of only three measured static parameters in the cost

function formulation reduces the need to acquire huge amounts of data. This is one

of the particular characteristics of the proposed methodology. Five components make

up the cost function:

Cost =Cost
ρ
Disppol

+Cost
ϕ
f +Costα1

RotA +Costα2
RotB +Costδ

RatioRot (3.11)

The power coefficients ρ , ϕ , α1, α2, and δ have been used to weight the individual

contributions, which can be more or less sensitive to the position of the damage.

Their impact will be evaluated afterwards. They have been fixed for preliminary

analysis and then calculated at a later stage to increase the quality of the results.The

formulas for each of the five addends of the Equation 3.11 are given following.

Cost
ρ
Disppol

=

(

(NE −2)
∑abs(Dispa −Dispm

∑absDispm

)ρ

(3.12)

Cost
ϕ
f =

(

abs

(

fm − fa

fm

))ϕ

(3.13)

Costα1
RotA =

(

abs

(

RotAm −RotAa

RotAm

))α1

(3.14)

Costα2
RotB =

(

abs

(

RotBm −RotBa

RotBm

))α2

(3.15)

Costδ
RatioRot =

(

abs
(

Ratio
m−Ratioa

))δ
(3.16)
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The formulas used for Ratio
m

and Ratio
a

are shown in Equation 3.17 and 3.18,

respectively:

Ratiom =

(

abs

(

RatioAm

RatioBm

))

(3.17)

Ratiom =

(

abs

(

RatioAa

RatioBa

))

(3.18)

The terms Cost
ϕ
f , Costα1

RotA,and Costα2
RotB refer to the measured parameters (dis-

placement at midspan and the rotations at Supports A and B). The first term,

Cost
ρ
Disppol

, is derived from the displacements of the other structural nodes, which are

calculated using the Vurpillot method using the measured quantities; the differences

between computed and measured quantities are normalized to the average measured

displacement. The final term, Costδ
RatioRot , is dependent on the rotation ratio mea-

sured at the supports. Measured and analytical (computed) quantities are indicated

by the subscripts m and a, respectively. As suggested previously, the measured values

have been numerically generated by means of a FEM analysis, with the damaged

elements having reduced bending stiffness; in real-world scenarios, they should

derive from on-site measurements. The analytical quantities, on the other hand, have

been calculated with a FEM analysis in which the values of bending stiffness of the

damaged elements have been extracted from the GA individuals. At the start, the

power coefficients for each part of the cost function were fixed to 1. The use of few

sensors/measure points (due to the cost function’s shape and information given by

influence lines), the use of parameters such as end rotations, which is frequently

overlooked, the lack of the need to save large amounts of data, and the reducing of

computational time are all positive aspects of the proposed cost function.

As [204] highlighted, each quantitative hyperparameter employed in the genetic

algorithm has a distinct influence and a significant effect on the success of the

algorithm. As a result, it is not advisable to chose them unwisely. Along with the

aforementioned parameters (npop, CR, MR), there are three more (β , γ , σ ) that are

dependent on the selected operators and require attention. The first, β , permits the

roulette wheel approach to pick the parents by assigning probabilities (probs) to

individuals in the population (see Equation 3.19). This method is implemented by

creating a probability distribution over the population so that the population’s better

individuals have a larger chance of being chosen as parents. In the aforementioned
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equation, c is the cost of the individual normalized with respect to the average cost

of the population. The second hyperparameter, γ , is related to the uniform crossover

operator. It increases the exploration capabilities of the GA.

probs = e−βc (3.19)

Two offspring, y j( j = 1,2) with n genes (see Equation 3.21) are built starting

from two parents x j( j = 1,2) with n genes (see Equation 3.20). The ith gene of

the jth offspring (see Equation 3.22) is linked to the ith gene of the corresponding

parent (x ji) and to the ith gene of the other (x ji) by means of the parameter αi. The γ

parameter is used to extend the classical dispersion range of αi from [0, 1] to [−γ ,

1+γ]. In this way, it is possible to create offspring somehow different from parents

x j = (x j1,x j2, ...,x jn) (3.20)

y j = (y j1,y j2, ...,y jn) (3.21)

y ji = αi x ji +(1−αi)x ji (3.22)

The third hyperparameter, σ , is related to the mutation operator, which adds a random

number with zero mean and variance σ2. A search has been carried out on a subset

of the space of hyperparameters given in Table 3.12, which specifies the range values

and step used for each of them in the context of a grid search method ([205–207].

Table 3.12 Grid search for hyperparameter optimization

Parameter Range Step

npop [10–50] 20

CR [0.5–1] 0.15

MR [0.01–0.1] 0.02

β [0.8–2] 0.2

γ [0.1–0.5] 0.1

σ [0.1–40] 10
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Neural Network: Supervised Learning for Selection of Cost Function Power

Coefficients

A neural network, a supervised learning model that is currently successfully em-

ployed in several scientific fields [208], has been used to enhance the accuracy of the

genetic algorithm results of the genetic algorithm. Once the damaged elements have

been identified, it has been trained to find optimal power coefficients for the cost

function. The damage scenarios, which have been characterized by some damaged

elements, have been linked to the power coefficients using numerical simulations.

Several damage cases have been explored, and numerical evaluations including

10,000 combinations of power coefficients have been run for each of them. For each

power coefficient, the minimum and maximum values of the explored variability

range have been set to 0.1 and 1, respectively, with the step set to 0.1. An exception

has been made in the case of ρ . This coefficient has been fixed because the associated

term in the cost function is related to computed parameters rather than measured

ones. Among the 10,000 combinations of power coefficients, the one corresponding

to the least error has been picked for each damage scenario. The error has been

calculated as the absolute value of the difference between the genetic algorithm’s

solution and the variables’ proper values. Additional linkages between other cases of

damage and power coefficients have been created by means of a simplified method

due to the considerable computational and time effort needed [209–211, 207, 212].

For damage cases similar to to the ones already studied, where ªsimilarº denotes

that the damage locations are close to those just analyzed, the power coefficients

previously computed with the addition of noise have been utilized. The noise varies

between 0.5 and 1.5 percent depending on the proximity to the previously examined

case. The 171 connections have been used to train and test a neural network. Figure

3.19 shows the neural network architecture. For each example provided to the neural

network, there are seven inputs. The first five are set aside for reporting damaged

elements, labelled 1 to 27. If nd (namely the number of damaged elements) is less

than 5, the remaining 5–nd inputs are set to zero. The positions of the most affected

elements are included in the last two inputs. The four power coefficients, on the

other hand, constitute the targets.
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Fig. 3.19 Architecture of neural networks

The samples have been divided into three groups: training (70%), validation

(15%), and testing (15%). A two-layer feedforward network, with a sigmoid transfer

function in the hidden layer and a linear transfer function in the output layer, has

been employed. The training algorithm employed Bayesian regularization and the

number of hidden neurons has been tuned to 27. Performance has been measured

using regression (R) and mean squared error (MSE). The correlation between outputs

and targets is evaluated using regression. The correlation between outputs and targets

is evaluated using regression. R values near 1 imply a strong relationship, whereas R

values near 0 indicate a random one. The MSE is the average squared difference

between the outputs and the target. Low values of this index mean good results.

3.3.2 Results

Under the above-mentioned traveling force, the influence lines of midspan deflection

and support rotations have been numerically calculated for the undamaged and

damaged structures for the analyzed problem. This have allowed the damaged

elements in the discretized structure to be localized, giving information for the

genetic algorithm. Three structural damage scenarios with two damaged elements

are depicted in Figure 3.20. The structural schemes are shown in the upper section

of the figure. The most significantly damaged element is shown in red, along

with the corresponding flexural stiffness. The color blue is used to represent the

element with less severe damage. The case on the right, for example, includes

two damaged elements, one with a 0.9EI for element n. 7 (de = 7) and the other

with a 0.75EI for element n. 16 (de = 16). The peaks (diamonds) corresponding

to the damaged elements may be observed in the squares of relative differences

δ
η ,rel
m , δ

ϕ,rel
A , δ

ϕ,rel
B for the midspan displacement and for the left (A) and right (B)

support rotations (e.g., δ
η ,rel
m = abs

(

(ηm(x)−ηm(x)
ηm(x)

)

. The use of these three indices
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also allows for the localisation of damage in areas where it is typically difficult to do

so, such as those near the supports (see the second case in Figure 3.20).

Fig. 3.20 Three damage scenarios identified by influence line methodology

It is worth mentioning that the bridge under study has a high bending stiffness.

This leads in relatively small differences in the values of displacement and rotation

between the undamaged and damaged states when the traveling force is applied.

For micrometer measurements, nevertheless, high-sensitivity displacement trans-

ducers such as LVDT sensors, as well as current approaches such as digital image

correlation (DIC) [213], are possible. Other damage-sensitive mechanical param-
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eters, such as strains, can also be employed; such technique is still accurate, and

the procedure provided above is still applicable in theory. The findings of damage

localization using influence lines are useful for estimating damage severity later on.

Implementing these two procedures at the same time would be quite computationally

expensive, particularly for complex problems. In these scenarios, the number of

design variables is high, and the accuracy of the solution worsens. Influence lines

can not only eliminate elements with a low likelihood of damage from further study,

as is the case of gray relation analysis [81], but they can also significantly reduce

the number of design variables by detecting damaged elements. The use of influ-

ence lines on a non-complex beam structure is a streamlining that has allowed the

process to be tested for the first time. Influence surfaces should be utilized on a

two-dimensional (2D) structural model to better characterize the bridge structural

response [202]. A preliminary study has been carried out to tune the GA’s numerical

parameters, as previously mentioned. The aim has been to determine the combi-

nation of hyperparameters that delivers adequate results for future investigations,

rather than the optimum combination of hyperparameters. As a result, performance

in terms of cost has been compared for each structural problem (case of damage

considered for the parameters tuning operation) and each combination of parameters,

neglecting the stochastic aspect of the problem. Using the range values and steps in

table 3.12, a total of 8,400 parameter combinations have been created. For each of

the four studied damage cases (DCs), the behavior of the cost function with regard

to parameter combinations has been examined. For the sake of simplicity, only one

damaged element is present in each of these cases. As a result, the GA’s number of

variables has been fixed to one. Table 3.13 shows the number de (between 1 and

27 starting from the Left support A) that identifies the damaged element, as well as

the related bending stiffness, EId , given as a proportion of the undamaged bending

stiffness EI, for each of the four damage scenarios studied.

Table 3.13 Damage scenarios for tuning GA numerical parameters

DC parameters DC1 DC2 DC3 DC4

de 14 14 2 2

Eid 0.5 EI 0.8 EI 0.5 EI 0.8 EI

The cost, as a function of parameter combinations and damage scenarios DC1

to DC4, is depicted in Figure 3.21. It is extremely dependent on the parameters,
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particularly for DC1. As a result, with DC1 as the worst scenario, Combination 558

has been chosen as the parameter combination with the lowest cost; view Table 3.14.

Table 3.14 Combination 558

npop CR MR β γ σ

50 0.8 0.003 1.4 0.2 0.1

Fig. 3.21 Cost based on parameter combinations and damage scenarios

For the examined damage scenarios, the outcomes in terms of cost, accuracy,

and error are shown in Table 3.15. The ratio between the estimated solution and the

correct one has been used to calculate accuracy. The error has been computed using

the equation 3.23:



3.3 Genetic algorithm supported by influence lines and a neural network for bridge
static periodic assessment 111

Error =
GAvalue −Correctvalue

Correctvalue

(3.23)

Table 3.15 Combination 558 cost and accuracy

Results DC1 DC2 DC3 DC4

Cost 0.6 0.30 0.24 0.29

Accuracy 1 0.9 1 1

Error 0 -0.1 0 0

Although the findings are acceptable, they are still subject of improvement.

Starting from information of the damage location, the effects of the power coefficients

(ϕ , α1, α2, δ ) of the cost function, which had previously been considered unitary,

have been examined. After finding the benefits of varying these coefficients in the

simplest damage situation (one element), it has been decided to fully leverage the

damage location information to improve results in even the most complicated damage

scenarios. A regression R of about 0.92 for the training set and about 0.88 for the

test set has been produced by utilizing the neural network, as previously mentioned.

They may be deemed satisfactory, though an increase of the number of sample cases

used to train the network will undoubtedly enhance them. Figure 3.22 depicts the

MSE value for the training and test sets versus epoch variation. The training set at

Epoch 1,000 achieves the best MSE value, which is rather minimal. In addition, the

test set’s MSE index is trending downward, indicating that the training data is not

overfit. Without overfitting, an increase in the number of epochs can improve the

network’s performance even further [214]. The error histogram is another approach

for determining the network’s quality, as shown in Figure 3.22. The error has a

Gaussian distribution with a mean close to zero and a small dispersion, as can be

observed.
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Fig. 3.22 Error histogram and performance of neural network

Validation tests have been carried out to ensure that the neural network has been

capable of generating power coefficients that could be used to determine damage

severity reliably. Starting with new damage scenarios and assuming that the damage

location is known via the influence line approach, the neural network (NN) has been

utilized to generate the power coefficients that would be employed in the genetic

algorithm to estimate the bending stiffness of the damaged elements. Table 3.16

shows the results of one of the new damage cases that has been tested. The error in

estimating the bending stiffness is computes by Equation 3.23.
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Table 3.16 Example of new case with two damaged elements

de EId ϕ α1 α2 δ2 Error

10,27 0.8 EI 0.75 1.07 0.36 0.52 1.3 10−3

0.95 EI 1.8 10−2

Figure 3.23 shows the error distribution. With a mean of -0.011 and a standard

deviation of 0.06, the normal distribution demonstrates that almost 70% of the

damage cases has an error less than 6%. The logistic distribution can also be used

to fit the data. It seems to fit the data even better with a mean of -0.0026 and a

standard deviation of 0.025. The damage examples sketched in Figure 3.23 are the

ones with the most significant errors. In overall, the results are satisfactory, but they

can still be improved by training the NN with more cases to eliminate the probability

distribution’s tails. The same damage cases have been utilized to demonstrate the

actual improvement in outcomes that may be gained by applying power coefficients

extracted from the neural network, as stated so far. A normal error distribution with

a mean of -0.015 and a standard deviation of 0.48 has been produced using unitary

coefficients, which is a less accurate solution than the one above. As a result, the

strategy is worthwhile.

As the geometric properties of the beam have been altered, the same damage

scenarios have been employed to test the methodology’s effectiveness. The error

distribution is essentially identical when a beam length of 50 m is considered.

Furthermore, the distributions shift very slightly when the value of the moment of

inertia I is changed. The results have been explored for moment of inertia values of

2 and 1.5 m4. In these circumstances, the normal distribution’s mean is around -0.01

and the standard deviation is around 0.08. These findings are encouraging in terms of

the applicability of the methodology as the geometric parameters of the beam change.

Finally, it is also worth noting that the methodology is computationally sustainable.

For each analysis involving the genetic algorithm, the needed computational time is

around 2.5 seconds.
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Fig. 3.23 Distribution of errors

3.4 In Closing

The first methodology discussed in this chapter (Section 3.2) investigates the static

and environmental data collected on a prestressed railway bridge during its first few

years of service. Correlation models have been developed following evaluations of

cause-effect relationships between the measured quantities in the healthy condition.

The modelling assumptions underlying such correlations are founded on physical

phenomena. These are represented by relationships that relate input parameters

(causes) to output parameters (effects), which can be described by complex models

due to the structural complexity and the multiplicity of phenomena to which it is

exposed. Two aspects have been explored and controlled in depth. The first one, the

assessment of the midspan strain of the unloaded deck, has been faced taking into

account the influence of several factors. Among these are temperature, its difference

(gradient) measured over many distances, and other environmental elements (for

example, solar radiation). The second task, the assessment of pier rotations and

joint expansion, has been performed by considering the impact of environmental
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variables on these phenomena. The correlations defining the undamaged structural

condition has been effectively modelled, resulting in extremely precise predictions of

the signal chosen as output of the model. The addition of a pre-processing operation

involving z-score normalization on a sliding window has been demonstrated to

be a tool capable of mitigating the effects of both structural and non-structural

delayed phenomena. This is necessary in order to get data that are repetitive. The

absence of such operation would have implied an ineffective training of the model

with a consequent inaccuracy. In fact, a model that learns different relationships

between input and output cannot be an accurate or robust model. Furthermore,

this has allowed for the development of successful correlation models and the

determination of the healthy structural condition. The use of additional temporal

parameters, on the other hand, has proved very effective in overcoming the lack

of some environmental parameters, such as solar radiation. The findings of the

signal analysis and reconstruction approach have resulted in the establishment of

undamaged-condition alarm thresholds (UCT) and successful fault detection, which

has outperformed the results of traditional thresholds (DT) based on design values.

The minimization of false alerts has been given particular consideration. The moving

median of the residual between the predicted and measured signals has been used as

a damage index to reduce their number. In detail, the moving median of the residuals

with respect to the seven preceding days has implied that an anomaly is reported

only if at least more than 50% of the signals in the previous week have an error

falling outside the threshold. The selection of features composing the correlation

models, the use of pre-processing operations to give data repetitiveness over time,

the exploitation of some temporal parameters to compensate for the lack of some

environmental ones, the selection and the training of specific regression model,

and the proposed damage index have all been found to be very successful in the

framework of long-term monitoring.

The second methodology presented in this Chapter considered the idea of a

hybrid technique based on static measurements that could aid a genetic algorithm in

identifying and quantifying structural damage with a reduced number of variables.

The proposed hybrid technique for inverse damage identification (detection, localiza-

tion, and estimation) has been successful and encouraging. The main new features

and highlights can be briefly listed as follows:
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• The use of influence lines with the three associated indices – namely, the

square of relative differences between undamaged and damaged stages for

the mid-span displacement,
(

δ
η ,rel
m

)2
, for the left (A) and right (B) support

rotations,
(

δ
ϕ,rel
A

)2 (

δ
ϕ,rel
B

)2
, makes it possible to identify damaged regions

(beam elements), either along the span or near the supports. Using the rotations

at the supports as control parameters certainly helps in this regard;

• By overcoming the exclusion of unlikely damage locations (e.g., gray relation

analysis), the application of influence lines drastically decreases the design

variables of the genetic algorithm. As a result, the computation time is reduced.

This is a conceptual prerequisite for the development of this methodology for

use in practical applications;

• The use of a cost function defined as the sum of five addends, each of which

is more or less influenced by the damage depending on its location, allows a

specific weight to be connected with each addend using power coefficients,

hence improving the solution accuracy . The findings reveal that the three mea-

sure points/sensors produce extremely accurate predictions in the investigated

case. The mid span displacement and the two end rotations are the only values

needed to calculate displacements at each node in the cost function;

• The power coefficient of the cost function can be successfully set using the

trained neural network. Its architecture is also capable of dealing with scenarios

involving more than two damaged elements;

• Damage scenarios characterized by localized bending stiffness reductions have

been successfully evaluated on a simply supported beam. Using different beam

lengths and geometric features, the same damage scenarios have been applied

to test the validity of the methodology. Without modifying the coefficients in

the algorithm, good outcomes have been achieved;

In summary, the achieved gains are in terms of computational speed, critical

element location utilizing few measure points, and adaptability. The findings for the

studied case make this technique appealing and deserving of future investigation.

Even though more study is needed before moving further with real-world applica-

tions, the proposed technique is generalizable. Areas of improvement involve the use
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of more refined structural models (grillage), the use of influence surfaces for damage

localization, other damage indicators, and damage scenario investigations.

The two presented techniques have been designed to complement each other for

the development of a holistic control plan for simply supported concrete railway

bridges.



Chapter 4

Transfer learning for structural

health monitoring of urban

pedestrian bridges

4.1 Problem definition

Pedestrian bridges in high-densities city are bridge structures that are structural

similiar and replicated extensively. In Lisbon, for example, there are 60 of these

bridges strewn across the city. The problem of managing a large number of bridges

of the same type is similar to that shown in the previous Chapter of this thesis.

However, in the current Chapter, the aim of optimising resources for the development

of control plans to ensure the infrastructure safety has been achieved by a different

method. This is Transfer Learning, a method that has recently gained relevance in

SHM. The application of transfer learning and domain adaptation methods to monitor

pedestrian bridges has not yet been applied. In this Chapter, to further understand

the potential and limitations of domain adaptation, the performance of the transfer

learning approach has been demonstrated first in a numerical simple supported beam

model. Then, an extension has been made to two real pedestrian bridges located

close the campus of the Lusòfona University. As will be shown in the following

sections, a further methodology defined as "direct standardization" has been used to

assess classification performance and a comparison with the results extracted from

the application of TCA has performed.
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4.2 Methodology

4.2.1 Transfer Component Analysis

The domain adaption strategy used in this investigation was the one proposed by

[215]. TCA is a transformation and dimension reduction space of features into a

reproducing kernel Hilbert space (RKHS), which is analogous to principal compo-

nent analysis [216]. This mapping is driven by the distance between probability

density distributions (PDF) of these features or other metrics, as well as an unknown

nonlinear function φ(·) that must be discovered. The basic idea is to use a domain

transformation technique to minimize the distance between these features while

keeping the main properties [217]. Kernel Mean Matching [218], Kullback-Leibler

Divergence [219], and the Maximum Mean Discrepancy (M ) are three well-known

methods for computing distances between feature distributions. This last method has

been chosen in this study since it is the simplest and most basic one to execute this

minimization. The squared average element of source and target domains into the

RKHS computed by [220]is the distance metric (M ) used here.

M (Xs,Xt) =

∥

∥

∥

∥

∥

1
ns

ns

∑
i=1

φ(xsi
)−

1
nt

nt

∑
j=1

φ(xt j
)

∥

∥

∥

∥

∥

2

H

(4.1)

where the subscripts s and t is the source and target domains, respectively, X =

[x1 · · ·xn]
T is the feature matrix, where n is the number of vectors in the source DS

and target TS domains in the Hilbert space H , and φ(.) is the nonlinear mapping

function to be determined. However, because it necessitates complex mapping

functions, minimizing equation (4.1) directly utilizing unlabeled features in the

target domain is difficult. A correlation matrix (or Gram matrix) can be used to

perform this technique as a simple measure of similarity between feature observations

in the source and destination domains, i.e., how comparable such features are based

on their distance. In a practical sense, the Gram matrix can be calculated using

the kernel approach, which reduces dimensionality by adopting an inner product

structure [221]. In this study, a linear kernel K was used.

Equation (4.1) can be rewritten as:
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M (Xs,Xt) = tr(K L) (4.2)

where tr(·) is the trace operator, and L ∈ R
(ns+nt)×(ns+nt) is described as:

Li j =



















1
n2

s
, xi,x j ∈ Xs

1
n2

t
, xi,x j ∈ Xt

− 1
nsnt

, otherwise.

(4.3)

To easly achieve the minimization of equation (4.2), the Gram matrix can be

decomposed in this form:

K =
(

K K
1
2

)(

K K
1
2

)

and replaced by an empirical kernel ˜K

˜K = K W W
T
K (4.4)

where W ∈ R
(ns+nt)×m is a transformation matrix such that reduces the dimensions

m, i.e. m << ns +nt , and also maps the features into the RKHS.

As a result, using this empirical kernel, the MMD can be rewritten as follows:

M (Xs,Xt) = tr
(

˜K L
)

≡ tr
(

W
T
K LK W

)

(4.5)

In order to retain the properties of the features after transferring, it is also

necessary to ensure that the data variance is conserved. The following is the data

variance:

W
T
K H K W , where H = I−

(

1
ns +nt

)

I (4.6)

where H is a centering matrix, I ∈ R
(ns+nt)×(ns+nt) is the identity matrix and I ∈

R
(ns+nt)×(ns+nt) is the matrix of one. Consequently, an optimization problem with a

constraint can be defined to find the optimal or sub optimal value of
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min
W

tr
(

W
T
K LK W

)

+µtr
(

W
T
W

)

subject to W
T
K H K W = Im (4.7)

where µ > 0 is the trade-off parameter related to the regularization term, and Im ∈
R

m×m is the identity matrix. The constraint’s restriction are intended to maintain the

data variance and keep the attributes of the source and target unchanged.

Equation (4.7) can be resolved by various different optimization procedures.

Among these approaches, Lagrange multipliers are beneficial to describe this opti-

mization as an equivalent maximization problem given by [222].

max
W

tr
[

(

W
T (K L K +µIm

)

W )−1
W

T
K H K W

]

(4.8)

where the m eigenvectors of (K L K + µIm)
−1K H K are the transformation

matrix W that shifts all attribute data into RKHS by diminishing the distance between

distinct domains and preserving the properties.

4.2.2 Statistical modeling for feature classification

In this study, a Gaussian model and a subsequent outlier identification approach have

been used to perform the classification. In detail, one of the most frequently applied

procedures has been utilized, namely the MSD. It is a distance measure used to find

outliers in multivariate statistics [223]. When one considers the training matrix, Xs,

with multivariate mean vector, µ , and covariance matrix, Σ, the MSD (or DI in the

context of SHM) between feature vectors from Xs and any new feature vector (or

observation) from the test matrix, Xt , is calculated as:

DI(xt) = (xt −µ)Σ−1 (xt −µ)⊤ (4.9)

As a result, multivariate outliers are defined as observations with DIs greater

than a given threshold. It is worth remembering that outlier identification requires

the assumption of a Chi-square distribution since it allows for the definition of

a cut-off value or threshold, c, for a level of significance, α , in the form of c =

invFχ2
n
(1−α), where Fχ2

d
is the cumulative distribution function of the central Chi-
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square distribution. When the DI of a feature vector is equal to or greater than c, it

is deemed a multivariate outlier. The choice of α involved a trade-off between the

Type I error (a false-positive) and the Type II error (a false-negative). Typically, a

level of significance of 5% is considered adequate.

4.3 Transfer learning between numerical models

Two beams with same static scheme, same section, but differing lengths have been

used in a numerical research for the source and target domain. Their cross-section is

rectangular, with a height of 0.4 meters and a width of 0.2 meters. The length of the

target beam, Lt , is fixed and equal to 5 meters. The length of the source beam Ls is

variable and connected to the one of the target beam by means of Equation 4.10.

Lt = Ls +(Ls ∆) (4.10)

The parameter ∆, which ranges from 0.2 to -0.2 (in steps of 0.1) in this study,

indicates the percentage of length variation between the two beams. For the source

and target domains, two populations of frequencies reflecting the healthy structural

state have bene produced, each with 1000 and 300 samples. To achieve this, first,

Gaussian distributions of 20000 samples for Young’s modulus (E), cross-section

height (h), and cross-section width (w) have been created. Table 4.1 displays the

mean values for such populations. The dispersion (in terms of standard deviation)

of these populations has been object of study. Indeed, to account for the effect of

parameter dispersion on the results provided by the methodologies listed below, three

combinations of standard deviation have been investigated. For each combination,

the standard deviation of the parameters (Std∗) has been expressed as the product of

a dispersion factor (F∗), defined in Table 4.2, by the mean value (see equations 4.11,

4.12, and 4.13).

Table 4.1 Mean values of Gaussian distributions of the key structural parameters

E [Pa] h [m] w [m]

35E +9 0.4 0.2
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StdE = FE mean(E) (4.11)

Stdh = Fh mean(h) (4.12)

Stdw = Fw mean(w) (4.13)

Table 4.2 Definition of the dispersion factors for combi parameter (i=1, 2, or 3)

Parameter comb1 comb2 comb3

FE 0.008 0.02 0.03

Fh 0.005 0.013 0.02

Fw 0.005 0.013 0.02

Second, random choices for E, h, and w were made 1000 times for the source and

300 times for the target, starting from the respective distributions consisted of 20000

values. In this manner, using analytical formulations, a population of frequencies has

been created, consisting of 1000 and 300 samples for the source and target domain,

respectively.

The first four longitudinal bending frequencies, the first four transverse bending

frequencies, and first torsional frequency have been computed analytically for the

two domains, with the aim of evaluating the results of the analysis even when the

number of frequencies constituting the individual sample/data varies. Nevertheless,

as explained in the following section, the results displayed pertain to data with only

one frequency of each type. The target domain has been then supplemented with 20

samples related to the damage condition (beam with crack). Three damage scenarios,

labelled based on the average crack depth (DS15, DS12, and DS10), have been

systematically studied in detail. They entail the creation of a crack (eg., average

depth 0.15, 0.12, and 0.10 m, respectively for DS15, DS12, and DS10) in 20 sections

between 1 and 1.20 meters from the left support. To get a dispersion of the data for

the three damage scenarios, a constant standard deviation of 0.6 cm was employed

in conjunction with each of the three mean crack depths.

Considering different values of the ∆ parameter, the comb parameter, and the

damage severity, Figure 4.1 displays five examples (from a to e) illustrating target
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and source domain in the original space. Indeed, for each of the 45 cases listed above,

transfer learning between source and target structures has been carried out utilizing

direct standardization and TCA (five length differentials, three dispersion scenarios,

and three damage scenarios). Although the categorization performance results for all

cases will be shown, five of them have been chosen for a more thorough explanation

of the outcomes. The choice is intended to address as many diverse scenarios as

feasible. The frequency distributions of the source and target structure are shown

in a frequency space that includes the first bending modes in the longitudinal and

transverse axes as well as the first torsional mode.

This allows for a better understanding of what happens as the parameter ∆, the

parameter comb, and the damage severity change. Table 4.3 shows the parameters

related to the five cases depicted in the Figure 4.1.

Table 4.3 Parameter definition (∆, comb, and DS) for meaningful cases

Case ∆ comb DS

a -0.2 1 15

b 0.1 2 12

c -0.1 3 12

d 0.2 3 10

e 0 2 10

All length differences between the source and target structures are represented by

the scenarios chosen. The largest damage will occur in the first scenario, followed

by medium damage in the second and third, and smallest damage in the final two.

As regards the dispersion, case a small shows a small dispersion, case b and e a

medium one, and cases c and d a large one. For the extremely favorable case, no

problem in damage recognition is foreseen (small dispersion, large crack scenario a).

The damaged data points are still plainly visible when the medium dispersion and a

medium crack are present (scenario b), but they are substantially closer to the normal

(undamaged) target data. When the undamaged and damaged target data partially

overlap, as in scenario c, some false negatives can be observed. The damaged data

points are substantially closer to the normal (undamaged) target data and substantially

overlap when the medium dispersion is coupled with a small crack (scenario e). Due
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to the overlap of damaged and undamaged target data, as in scenario e, there are

several false negatives occurring.

Fig. 4.1 Original space. Black (Healthy source data), Blue (Healthy target data), Red
(Damaged target data)

Other observations can also be made from these five examples. As is well known,

the length of the beam has an effect on its frequencies. As the length increases,

the frequency decreases. In Figure 4.1, due to the increase in length, the target
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domain shifts away from the source domain in the second and fourth cases, resulting

in progressively smaller values of the three frequencies. From the other hand, it’s

worth noting that increasing dispersion in the undamaged state leads to include the

damaged samples, particularly if the damage is small.

4.3.1 Analitycal and numerical solution

Undamaged condition

To calculate the frequencies in the undamaged condition, the following formulations

have been adopted.

Equation 4.14 [224] calculates the angular frequency (p) for each bending mode

(longitudinal and transverse).

p =

√

b2 E I

ρ AL4 (4.14)

In this equation E is the elasticity modulus, I is the cross-sectional area moment, ρ

is the density, A is the cross-sectional area, and L is the beam length. The value b

is determined for each mode, after defined the quantities r2 (Equation 4.15) and s2

(Equation 4.16), and the value of β (Equation 4.17) is replaced in Equation 4.18.

r2 =
I

AL2 (4.15)

s2 =
E I

k AGL2 (4.16)

β =
((r2 + s2)+((r2 − s2)2 + 4

b2 )
0.5)0.5

√
2

(4.17)

sinbβ = 0 (4.18)

There are two more parameters in Equation 4.16 that have still to be stated. The

numerical shape factor for the cross section k is the first. Because a rectangular shape

is being evaluated, this value is set to 5/6 in this example. The modulus of rigidity G

is the second parameter.



4.3 Transfer learning between numerical models 127

The angular frequency expressed by Equation 4.19 has been employed for the

torsional mode.

ωnt =
(nπ

L

)

√

GJs

Jo ρ
(4.19)

In this Equation Js is the cross section equivalent moment of inertia owing to

torsion, Jo is the polar moment of inertia, n is the mode number, and ρ is the density.

Equation 4.20 provides the equivalent moment of inertia of a cross section due to

torsion.

Js = 0.2287hw3 (4.20)

The natural frequencies [Hz] for both flexural and torsional modes have been

calculated by dividing the angular frequencies by the value (2 π).

Damaged condition

A crack has been inserted in the beam to represent damaged cases for the target

domain.

The longitudinal bending mode has been studied using an analytical formulation

based on a perturbative solution [225]. A beam with a crack of length (a) positioned

at a distance L∗ (e = L∗

L
) from the left support is considered in this method (see

Figure 4.2 for crack and beam geometry). Such approach define q(α) and Θ(α) as

functions based on the crack ratio α = a
h

and on the beam cross-section geometry.

Fig. 4.2 Beam with a crack
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For rectangular section:

q(α) =

(

α

1−α

)2

(−0.22+3.82α +1.54α2 −14.64α3 +9.60α4) (4.21)

Θ(α) = 2

(

α

1−α

)2

(5.93−19.69α +37.14α2 −35.84α3 +13.12α4) (4.22)

Equation 4.23 yields a natural angular frequency ωc as a function of Λ2, a crack

beam frequency parameter (Equation 4.24) that depends on a frequency parameter

λ 2 (Equation 4.25), and a constant c (Equation 4.26).

Λ2 =

(

ρ A

E I

)

L4 ω2
c (4.23)

In the following formulations n represents the mode number.

Λ2 = λ 2 −2n2 π2
(

h

L

)

( r2

s2 )q(α)(1− c
nπ )

2 cos(nπ e)2 c2 Θ(α)s2 sin(nπ e)2

s2 (1+ c2 r2)

(4.24)

λ 2 =
1+(nπ)2 (r2 + s2) −

√

(1+(nπ)2 (r2 + s2))2 −4(nπ)4 r2 s2

2r2 s2
(4.25)

c = nπ −
s2 λ 2

nπ
(4.26)

The natural frequencies [Hz] for each flexural mode have been calculated by

dividing the angular frequencies by the factor 2π . The method has been found to be

appropriate because, for small dimensionless crack lengths, such as those employed

in this work, the findings are comparable to those obtained using the analytical

method, and a reduced computing effort can be used.

Because there are no analytical formulations for flexural transverse and torsional

modes, a FEM model has been created to estimate the variations to be applied to the

frequencies of the undamaged beam to account for the influence of crack presence.
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A beam made of 500 elements, bound at the ends by constraints that do not allow

displacement in three directions and rotation with respect to the beam’s development

axis, is one such model produced using the Robot Structural Analysis software.

Figure 4.3 depicts the model with the cracked element marked in blue.

Fig. 4.3 Simply supported cracked beam

The ratio between the damaged and undamaged transversal/torsional frequencies

in the FEM model is assumed to be the same as in the analytical model (MAT-

LAB) in order to compute the flexural transverse and torsional modes in the damaged

condition

4.3.2 Methods and results

The performance of classification has been evaluated using two methodologies: direct

standardization in the original space and TCA with SD normalization pre-processing

operation. For the three damage scenarios, the dispersion of the source and target

datasets in the original space (parameter comb) and the length variation between the

source and the target domain (parameter ∆ ) have been investigated.

Direct standardization

The percentages of false positives (error type I) and false negatives (error type II)

relative to the total amount of undamaged and damaged data in the target structure,

respectively, are used to quantify damage detection errors. In Tables 4.4, for the

highest level of damage, 4.5, for the middle level of damage, and 4.6, for the lowest

degree of damage, they are presented for all 45 examined cases. Figure 4.4 shows
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what happens in the five cases chosen as representative. In Tables 4.4 to 4.6, the

values that relate to the chosen scenarios are also marked.

Fig. 4.4 Standardized space. Black (Healthy source data), Blue (Healthy target data), Red
(Damaged target data.

The direct standardization with respect to the undamaged data shows Type I

error (false positive error) about constant and equivalent to 4%. The Error Type II

(false negative error) is stable with respect to the ∆ parameter (except for ∆ equal to
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-0.1). The limited impact of the length difference between the source and the target

structure means that the methodology is effective between geometrically different

structures.

The error Type II is a function of the healthy source and target set dispersion (i.e.,

the parameter comb) as well as the severity of the damage. As the dispersion widens,

so does the error. When the damage is of medium/low severity, such as in the DS12

and DS10 damage scenarios, this behavior emerges more clearly.

Large damage is always evident (see Table 4.4). Except for the significant

dispersion, medium damage is also easily identifiable. The biggest false negative

rate is associated with the largest dispersion (see Figure 4.4(c)), where considerable

overlap between the damaged and undamaged target data results in the incorrect

classification of 9 out of 20 damaged points. Only in the situation of a small

dispersion of undamaged data is a small level of damage clearly identifiable (see

Table 4.6).

Particularly for the lowest and middle levels of damage, the classification per-

formance is heavily reliant on the dispersion of the target data that has not been

damaged (see Tables 4.5 and 4.6). The smallest dispersion for such damage levels

involves damaged data points being evenly spaced from the undamaged ones. As can

be observed in Figure 4.4(b), the damage data points for the medium dispersion are

quite distanced from the undamaged ones for the medium level of damage, and the

false negatives range from 15% to 25%. On the flip side, as shown in Figure 4.4(e),

the majority of damaged readings are incorrectly classified for the small damage

case. For the medium and smallest damage levels, respectively, the majority or all

damaged readings are not correctly classified due to the biggest dispersion. In fact,

the damage measurements partially or entirely overlap the undamaged data (Figure

4.4 (c) and (e)).
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Table 4.4 Errors in damage identification for different length differentials and levels of
dispersion for a 15 mm crack depth

DS15

∆ 0.2 0.1 0 -0.1 -0.2

Type of error [%] I II I II I II I II I II

Comb1 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0

Comb2 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0

Comb3 4.3 5 4.3 5 4.3 10 4.3 0 4.3 10

Table 4.5 Errors in damage identification for different length differentials and levels of
dispersion for a 12 mm crack depth

DS12

∆ 0.2 0.1 0 -0.1 -0.2

Type of error [%] I II I II I II I II I II

Comb1 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0

Comb2 4.3 15 4.3 15 4.3 25 4.3 0 4.3 25

Comb3 4.3 80 4.3 80 4.3 90 4.3 45 4.3 90

Table 4.6 Errors in damage identification for different length differentials and levels of
dispersion for a 10 mm crack depth

DS10

∆ 0.2 0.1 0 -0.1 -0.2

Type of error [%] I II I II I II I II I II

Comb1 4.3 0 4.3 0 4.3 0 4.3 0 4.3 0

Comb2 4.3 70 4.3 70 4.3 80 4.3 10 4.3 75

Comb3 4.3 100 4.3 100 4.3 100 4.3 100 4.3 100

TCA with an SD normalization preprocessing

Similar to Direct standardization, the percentages of false positives (error type I)

and false negatives (error type II) in relation to the total number of undamaged
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and damaged data in the target structure, respectively, are used to describe damage

detection errors. Tables 4.7, 4.8, and 4.9 for the highest level of damage, the

middle level of damage, and the lowest level of damage, respectively, show them

for each of the 45 testing scenarios. They are referred to analyses carried out with

the regularization parameter µ set at 0.1. Figure 4.5 displays the plots of the data

distribution in the latent space for the five chosen scenarios. Tables 4.7 to 4.9 further

emphasize the values corresponding to the chosen cases.

Since TCA is not normalizing the SD, we are always doing it in the original

space, and then run TCA and go to the latent. For both the source and target domains,

this type of standardization has been done with regard to the undamaged samples.

Table 4.7 Errors in damage identification for different length differentials and levels of
dispersion for a 15 mm crack depth

DS15

∆ 0.2 0.1 0 -0.1 -0.2

Type of error [%] I II I II I II I II I II

Comb1 12.6 0 12.6 0 12.3 0 14.6 0 12 0

Comb2 5 0 5.3 0 5.3 0 5 0 5 0

Comb3 4 10 3.6 10 3.6 10 4.3 0 4.3 10

Table 4.8 Errors in damage identification for different length differentials and levels of
dispersion for a 12 mm crack depth

DS12

∆ 0.2 0.1 0 -0.1 -0.2

Type of error [%] I II I II I II I II I II

Comb1 6.6 0 6.3 0 6.3 0 8.3 0 6.3 0

Comb2 3.6 15 3.3 15 3.6 20 4 0 3.6 15

Comb3 3.6 70 3.3 70 3.6 70 4 40 4 70
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Table 4.9 Errors in damage identification for different length differentials and levels of
dispersion for a 10 mm crack depth

DS10

∆ 0.2 0.1 0 -0.1 -0.2

Type of error [%] I II I II I II I II I II

Comb1 5 0 5 0 4 0 5.3 0 4 0

Comb2 3.3 70 3.3 70 4 70 4.3 10 4 70

Comb3 3.6 100 3.6 100 3.6 100 4 90 4 100

In all 45 of the examined examples, TCA with an SD normalization pretreatment

of the frequency data appears to be able to identify the target structure’s normal

behavior. False positive errors, in contrast to the direct standardization method, are

not constant and appear to be impacted by the degree of dispersion of the undamaged

data. The impact of the dispersion of the undamaged data becomes increasingly

apparent as the damage levels rise.

As can be seen from Table 4.7, large damages are always straightforward to

recognize although the classification performance is slightly subpar compared to

the direct standardization technique. Except for a significant dispersion, medium

damage is also easily identifiable. The biggest false negative rate is associated with

the largest dispersion condition (see Figure 4.5(c), where some overlap between the

undamaged and damaged target data results in the misclassification of 8 out of 20

damaged points. The false negatives for the medium damage level are a little bit

lower than those from the direct standardization method. As concern the small level

of damage, it is clearly identifiable only in the case of small dispersion of undamaged

data (see Table 4.9).

Particularly for the lowest and middle levels of damage, the classification per-

formance is heavily reliant on the dispersion of the target data that has not been

damaged (Tables 4.8, 4.9). The damaged data points are sufficiently spaced from the

undamaged ones for both damage scenarios for the smallest dispersion condition.

The damage data points are adequately separated from the undamaged ones for the

medium level of damage in the medium dispersion example, and the false negatives

range from 15% to 20%, as can be observed in Figure 4.5(b). On the other hand,

the majority of damaged readings are incorrectly classified when the small level
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of damage is present (Figure 4.5 (e)). For the medium and lowest damage levels,

respectively, the majority or all damaged readings are not correctly classified in

the largest dispersion case. In fact, the damage measurements partially or entirely

overlap the undamaged data (Figure 4.5 (c) and (e)). TCA displays a type two error

for medium and low damage levels that is a little bit lower than what the direct

standardization technique provides.

The length difference between the source and target structures appears to have a

very small impact on the classification performance. For this reason, TCA between

structures that are geometrically significantly dissimilar from one other turns out to

be possible, similar to the direct standardization technique.
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Fig. 4.5 Latent space. Black (Healthy source data), Blue (Healthy target data), Red (Damaged
target data)
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4.4 Transfer learning between two pedestrian bridges

4.4.1 Structures and data set description

In Campo Grande, district of Lisbon, there are two similar pedestrian bridges dis-

tanced by 225 m. Herein we designated them as Bridge Target (Figure 4.6) and

Bridge Source (Figure 4.7 ).

Fig. 4.6 Bridge Target.

Both bridges are in front of Lusofona University’s Campus and are characterized

by a superstructure consisting of two prefabricated beams in reinforced and pre-

stressed concrete, with two I-shaped cross section beams linked by simply supported

slabs at the bottom flanges, as shown in Figure 4.8.

Fig. 4.7 Bridge Source.
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Fig. 4.8 Typical cross section of both bridges.

On March 2, 2022, 45-min ambient field test was performed on the Bridge

Target’s deck (Figure 4.9) in order to study the influence of mass variability on its

modal properties. Assuming an average of 65 kg per person, the total additional

mass caused by 56 people on the deck over 10 min may be approximated by 3640

kg.

Fig. 4.9 Ambient vibration test on Bridge A with additional mass caused by pedestrians.

The total data set is made up of: 90 samples related with the healthy condition

for the Source Bridge, 109 samples related with the healthy condition for the Target
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Bridge, and 10 samples related with the damaged condition for the Target Bridge

(simulated with the additional mass).

4.4.2 Methods and results

Figure 4.10 shows the first three natural frequencies for both pedestrian bridges in

the original space.

Fig. 4.10 Original space

Direct standardization

Table 4.10 displays the results obtained with the Direct standardization strategy and

Figure 4.11 shows a 3D plot of the first three frequencies after such operation. This

strategy shows optimal damage detection capability.

Type I error [%] Type II error[%] Total [%]

8.25 0 7.56

Table 4.10 Error with Direct standardization strategy
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Fig. 4.11 Standardized original space

TCA with SD normalization preprocessing

Table 4.11 shows the results obtained with the TCA with SD normalisation prepro-

cessing strategy. Figure 4.12 displays the two components Z1 and Z2 in the latent

space. This strategy shows the same Type I error as the previous one. The Type II

error is higher but the damage detection capability remains good.

Type I error [%] Type II error[%] Total [%]

8.25 30 10.08

Table 4.11 Error with strategy "TCA with SD normalization preprocessing"
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Fig. 4.12 Latent space

4.5 In Closing

In this Chapter, numerical analyses have been firstly carried out to understand the

potential and limitations of domain adaptation (transfer learning) and standardization

techniques for pedestrian bridges. They demonstrate that the effect of length variation

(∆ parameter) between beams in the source and target domains is negligible on the

results. This is a strength for the application of such techniques for similar structures

but which may have differences in their size. As can be seen from a comparison of

Tables (4.4, 4.5, 4.6) and (4.7, 4.8, 4.9), the two techniques are both dependent on

the dispersion of the data in the undamaged condition. The Direct Standardisation

technique shows a constant Type I error (around 4%) and slightly lower damage

detection capability for medium and low severity damage (DS12-D10) than TCA.

On the other hand, the TCA technique shows a non-constant but still adequate Type I

error in most cases (less than 15%) and a consistent damage detection capability. The

application of these two techniques to a real case has showed encouraging results for

both techniques, making them worthy of further investigation.



Chapter 5

Deep convolutional neural network

support in a multi-level non-invasive

tunnel assessment1

5.1 Problem definition

After bridges, tunnels are the second most common engineering element in Italy’s

infrastructural assets. The latter is made up of approximately 33,500 bridges and

2,500 tunnels. Due to the size of the asset, new automatic control plans are clearly

required. The current state of infrastructure aging, further, adds the necessity of

their creation and execution. Indeed, most of infrastructures date from the 1960s

and are, thus, very vulnerable to age-related deterioration. Structural conditions may

differ from the original design due to several factors such as structural deformations

and damages, voids, material deterioration [226], water leakages [227–232], frost

damage mechanisms [233], earthquake cracks [234], and construction defects.

1Part of the work described has been previously published in:
B. Chiaia, G. Marasco, S. Aiello. Deep convolutional neural network for multi-level non-invasive
tunnel lining assessment. Frontiers of Structural and Civil Engineering 16 (2), 214-223 (2022).
G. Marasco, M.M. Rosso, S. Aiello, A. Aloisio, G. Cirrincione, B. Chiaia, G. C. Marano. Ground
Penetrating Radar Fourier Pre-processing for Deep Learning Tunnel Defects’ Automated Classifi-
cation. In: Iliadis, L., Jayne, C., Tefas, A., Pimenidis, E. (eds) Engineering Applications of Neural
Networks. EANN 2022. Communications in Computer and Information Science, vol 1600. Engineer-
ing Applications of Neural Networks, 165-176 (2022).
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5.2 Methodology

This section will illustrate the proposed methodology for developing a tunnel control

plan. It lays the foundations in the use of a specific technology/instrumentation

(GPR), the outputs of which will be processed through deep learning algorithms

inserted within an analysis flow.

5.2.1 Ground Penetrating Radar

A GPR campaign produced the images utilized in the damage classification. This

technology is a non-destructive screening approach [235] that is commonly utilized

in civil engineering applications [236], specifically for analyzing the structural

conditions of tunnels [237]. Concrete void identification [238], subsurface utility

tracking [239] , railway ballast optimization and evaluation [240], and landmine

detection [241] are just a few of the uses. Such instrument is well-known for its high

penetration capability as well as its ease of use and transportation [242]. As a result

of these capabilities, it is a useful tool for detecting and locating damage.

GPR is a geophysical [243] survey method that involves sending high-frequency

electromagnetic wave impulses into a material using an antenna with a frequency

ranging from 10 to 2600 MHz. The dielectric characteristics of the material influence

the propagation of such an impulse. As a result, certain factors, such as water, have a

large impact on the quality of the representation. Indeed, due to its presence a portion

of the signal is reflected and attenuated, resulting in a rendering that is less clear and

intelligible. The images used in this investigation have been obtained through the

use of two GPR by the RINA company. The first used a dual-frequency antenna,

whereas the second used a high-frequency antenna. The technical elements of each

are reported in Tables 5.1 and 5.2.
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Deep convolutional neural network support in a multi-level non-invasive tunnel
assessment

Table 5.1 Technical characteristics of GPR with dual frequency antenna.

Characteristics Value

Minimum number of channels 4

Pulse repetition frequency (kHz) 400

Range (ns) 0-9999

Min. number of scans (scans/second) 400

Voltage (V) 12

Primary dual-frequency antenna (MHz) 400-900

Secondary dual-frequency antenna (MHz) 200-600

Table 5.2 Technical characteristics of GPR with high-frequency antenna.

Characteristics Value

Minimum number of channels 4

Pulse repetition frequency (kHz) 400

Range (ns) 0-9999

Min. number of scans (scans/second) 400

Voltage (V) 12

High-frequency antenna (GHz) ≥2

The dual-frequency antenna has been used to acquire longitudinal profiles, the

number and layout of which have been determined by the number of lanes and tunnel

dimensions (Figure 5.1). GPR scans using a high-frequency antenna, on the other

hand, can be longitudinal or transverse. This is dependent on the level of detail

necessary.
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Fig. 5.1 2-lane tunnel (3 profiles) and 3-lane tunnel (5 profiles).

Database creation: image pre-processing and engineering judgement

The database used to develop and evaluate the proposed methodology is made up

of images (input), namely GPR profile, that are linked to a specific structural state

(output). Image-based analysis (IBA), i.e., visual recognition methods of certain

patterns with qualified inspectors, as well as a range of additional tests, such as

transverse GPR, jack, pull-out, core drilling, and videoendoscopy, have been used to

support the profile interpretation and, consequently, the categorization process. It is

worth noting that the longitudinal GPR profiles have been acquired through a B-scan

visualization and pre-processing images have been taken prior to their use.

First of all it is essential to dwell on the GPR profile characteristics. Such profiles

have a vertical axis that represents the depth of the investigated thickness and a

horizontal one that represents the progressive distance from the structure’s beginning.

Figure 5.2 shows an example of a GPR profile with interpretations.
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Fig. 5.2 GPR interpretation

Noise, sound tails, and interferences can impact GPR profiles. Their interpre-

tation, whether done by experts or by an algorithm, might be hindered by external

noise. Therefore, the RINA company has implemented four types of filters. To prop-

erly interpret the studied depth, the first filter ("Move start time") has been utilized

to remove the part of the signal between air and examined medium. The second

(ªBackground removalº), the third (ªBandpass filterº), and the fourth (ªSmoothed

gainº) one have filtered the noise, the high frequencies, and equalized the power,

respectively. The first executed pre-processing procedure has been the profile cutting,

which started with filtered GPR profiles. Each profile has been split down into

components with sizes ranging from 112 to 600 horizontal pixels and 110 to 564

vertical pixels. This operation has been performed with the aid of PineTools’ free

web tools. The second operation to effectively use such profiles in the proposed

methodology, is the axes removal. Then, a data augmentation strategy has been

utilized to increase the classification performance. This strategy proved to be quite

beneficial, as many studies in the literature [244] have shown. The horizontal flip

augmentation [245, 246], which involves rotating images around the vertical axis,

has been exploited. Microsoft Office Picture Manager has been used to perform this

task. Except for the images relating to healthy conditions, such method has been

carried out for all of the classes. The presence of a large number of images in this

class led to this decision. After performing the operations outlined thus so far, the

database has been created by associating the ith image to its class. It is pointed out

that each input has a resolution of 96 dpi. The samples are labelled on the basis

of the interpretations provided by the defect recognition phase carried out by the

human experts. This has been done by comparing the filtered GPR profiles without

interpretations to the reports that included them and their interpretations.
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5.2.2 Convolutional Neural Network and Transfer Learning

Among deep learning algorithms for image classification, convolutional neural

networks (CNNs) stand out. Beginning in the 1980s, studies on the visual cortex

of the brain have investigated CNNs. Nevertheless, it has only been in the last

ten years that they have become a dominant force in the DL field due to improved

processing power and access to training data [247]. Moreover, the CNNs exploits

transfer learning methodology adopting pre-trained models tailored to certain tasks

with fine-tuning techniques, further reducing down the computing cost [248].

ResNet-50 has been selected among the known pre-trained neural networks(e.g.,

AlexNet, SqueezeNet, ShuffleNet, ResNet-18, GoogLeNet, ResNet-50, MobileNet-

v2, and NASNetmobile) and then used within the MATLAB programming environ-

ment to accomplish the classification problem. He et al. [249] created this CNN

in 2015. Around 25 million parameters make up ResNet-50. There are 177 layers

in all, 49 of which are convolutional and one of which is fully connected. It is

pre-trained on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

image classification and localization dataset. Through 1,281,167 training images,

50,000 validation images, and 100,000 test images, the network is able to classify

1,000 object classes [250, 251].

In order to better understand the entire transfer learning process, it is deemed

useful to take a closer look at the initial network training database and how it was

constructed. Following a brief description of the ILSVRC public image dataset.

The synset hierarchy of ILSVRC can be seen as a "reduction of the full ImageNet

one. Therefore, a quick explanation of the ImageNet dataset is required to obtain

an overall framework. Large-scale image ontology "ImageNet" was created using

the WordNet structure as its foundation. The hierarchical organization of WordNet

is adopted by ImageNet [252]. A "synonym set" or "synset" is the term used to

represent any relevant concept in WordNet that may be expressed by several words

or word phrases. For each synset in ImageNet, there are on average of 500–1000

images. There is a quality-checked and human-annotated for each images. The

gathering of potential images for each synset is the initial step in the creation of

ImageNet. By using multiple image search engines, the images are found on the

Internet. In order to gather a reasonably precise dataset, researchers rely on people

to check each candidate image gathered in the prior stage for a certain synset. This

is accomplished by utilizing the Amazon Mechanical Turk (AMT) service, a website
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where assignments can be posted for individuals to perform and be paid. A quality

check is carried out on user ratings; multiple users are asked to label the same image

and a minimum level of agreement is established between them for the purpose of

such labelling. The method used to build ImageNet is the same one used for the

task of collecting images for ILSVRC classification [253]. Directly pulled from

ImageNet are the training images. As regards the validation and test set, further

images are gathered with the same methodology.

After the description of the initial database just given, the characteristics of the

chosen network, ResNet-50, are discussed in more detail. ResNet-50 is characterized

as a "feed forward" neural network with "residual/skip connections" that uses the

Rectified Linear Unit (ReLu) and the softmax as activation functions. Its develop-

ment arose from the identification of an unexpected phenomenon: "raising the depth

of network, layers increases the chance of making the network worse". Deeper neural

networks should perform better than shallower ones, or at the very least, exhibit

better results during the training phase. Indeed, the overfitting phenomenon is not

possible during this phase. Nevertheless, it is well recognized that as the network’s

depth grows, the rise in accuracy is not always validated, resulting in a degradation

problem. The presence of a residual unit (skip connection) that allows ResNet to

learn the differences between the input and output layers is an innovative feature

that sets it apart from similar competitors. Excessive depth can be mitigated in this

way. ResNet has been chosen to face the classification task for its high network

depth and its fairly low computational level [254]. In detail, as mentioned above,

Res-Net-50 adopted in the present study was implemented in the MATLAB2021a

programming environment by adopting the pre-trained model on the ILSVRC public

image dataset. By means of a fully connected layer with 1000 units and a softmax

layer, the initial/baseline pre-trained ResNet-50 was capable of categorizing images

into 1000 different object classes.

To fit the needs of the current investigation, it was modified. To perform the

binary classification tasks for each hierarchical level, the final fully connected layer

has been modified. The hyperparameters reported in 5.3 have been used to fine-

tune the network to perform binary classifications.
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Table 5.3 Hyperparameters

Learning rate Mini-bach size Max epoch

0.001 32 12

5.2.3 Multi-level damage classification

The proposed methodology for tunnel lining condition assessment has been designed

in six levels, as shown in the flowchart in Figure 5.3.

Fig. 5.3 Multi-level damage classification methodology flowchart

As illustrated by the hierarchical tree in Figure 5.4, the total number of samples

for each level is progressively decreasing.
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Fig. 5.4 Hierarchical tree for the multi-level approach

As reiterated and expanded upon in the Section 5.3, to obtain a good classification

model, a balanced approach was forced from the class with the minimum number of

samples. Table 5.4 reports the number of samples per class for each level.

Table 5.4 Samples for class.

Level Value

1 4130

2a 492

3 900

4 936

5 1080

6 408

It is feasible to gain more precise knowledge regarding the presence and type

of structural damage as one progresses from the lower to the higher levels. This

strategy attempted to draw more attention to the important issues that required a

more in-depth assessment of the current structural degradation. This idea is similar

to that described in Italy’s newly passed "New guidelines for the classification and

management of risk, safety assessment, and monitoring of existing bridges" (2020).
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When a GPR profile is examined, it can be classified into one of 14 categories, which

are listed follows.

• C1: Healthy and Reinforcement. Images connected with a healthy structural

condition and the likely presence of reinforcement, notably covering centring,

make up this class;

• C2: Damaged. Images containing at least one or more types of damage are

in this class;

• C3: Healthy. This class is composed by images representing healthy structural

condition;

• C4: Reinforcement. Images with reinforcement, such as covering centring, are

included in this class;

• C5: Mixed warning. Images in this class are characterized by the combination

of two or more types of damages;

• C6: Warning. This class is formed by images showing a single type of damage.

The potential damages are anomalies, cracks, simply voids, detachments or

excavations;

• C7: Crack. The presence of cracks is a distinguishing feature of images in this

class;

• C8: Anomalies, simply voids, detachment or excavation are the damages that

can appear in the images in this class;

• C9: Anomaly. This class of images contains anomalies, such as inhomogeneity

of the covering casting. Aging concrete, temperature variations, wrong with the

casting, crawl spaces, and reduced injuries are among the causes of this

phenomena;

• C10: Mixed voids. Voids of different nature are shown in the images of this

class;

• C11: Medium-sized and deep voids characterize the images of this class;
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• C12: The detachment and excavation phenomena are shown in the images in

this class. The C13 and C14 classes, respectively, provide a more extensive

description of such phenomena;

• C13: Detachment. This phenomenon results in an exterior void, as well as

some cracks;

• C14: Excavation. This phenomenon results in a large internal void.

The proposed methodology is applied both to GPR profiles subjected only to the

preprocessing operations described so far (Section 5.2.1) and to those subjected to

a further operation consisting in the bidimensional Fourier Transform. Details and

theoretical deepenings concerning this technique are reported in the Section 5.2.4.

5.2.4 Two dimensional Fourier Transform for image processing

The Fourier Transform (FT) is a signal processing method that decomposes a signal

into its fundamental components. Furthermore, it performs domain mapping, which

involves transferring the representation of the problem from the spatial or time

domain to the Fourier or frequency domain. The FT expresses a signal as an infinite

sum of harmonics distinguished by distinct frequencies and specifying the frequency

content of each one for continuous phenomena. Even with the most advanced

instrumentation, data is acquired discretely through a sampling procedure in the

actual world. When the sampling frequency is two times the Nyquist frequency,

which is the greatest signal representable frequency, any continuous signal may

be reliably and uniquely reconstructed from its samples, according to the Nyquist-

Shannon sampling theorem. [10] [23]. The Discrete version of the FT (DFT) has

been created to cope with real-world sampled signals that are discrete signals. A

digital image is typically represented by a matrix/tensor of pixels, with each pixel

containing specific values. A gray-scale image with 8-bit precision is a matrix in

which each pixel can take on an integer value between 0 and 255. A red-green-blue

(RGB) image, on the other hand, is represented by a tensor with a depth-size of

three, in which each pixel is encoded by three bytes because each color channel

can take integer values ranging from 0 to 255 [255]. By examining the vertical and

horizontal directions, an image can be interpreted as two-dimensional signals of pixel

values without affecting generality [256]. As a result, a 2D discrete-space signal
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(digital image) can be decomposed into its main sinusoidal components using the

FT. Only a specific amount of harmonics are obtained due to the sampling frequency.

It must, nevertheless, be adequate to represent the information in the image [257].

Considering a digital image in the spatial domain A of size n×m with components

ars, with 0 ≤ r ≤ n−1, 0 ≤ s ≤ m−1, the discrete 2D-FT (2D-DFT) is a matrix F

in the Fourier domain of size n×m with components [255]:

f (k, l) =
n−1

∑
r=0

m−1

∑
s=0

a(r,s)e−2πi( kr
m + ls

n ) (5.1)

where: 0 ≤ k ≤ n− 1, 0 ≤ l ≤ m− 1. Essentially, the 2D-FT sums the products

of the spatial image input and the sinusoidal basis functions, which are written

in complex exponential form. The term f (0,0) represents the direct current (DC)

component which is the average brightness of the input image, whereas the last

realization f (n−1,m−1) corresponds to the maximum frequency component [257].

The inverse 2D-FT (2D-IDFT) is defined as follows:

a(r,s) =
1

n ·m

n−1

∑
k=0

m−1

∑
l=0

f (k, l)e2πi( kr
m + ls

n ) (5.2)

To reduce the computational effort, it is possible to show that the 2D-DFT may be

computed as a series of 2n one-dimensional FT [257], resulting in a computational

complexity of O(n2). To further decrease the complexity to O(n log2(n)) [257] Fast

Fourier formulations (2D-FFT) have been created. The FT operation produces a

complex matrix that can be represented by real and imaginary parts, or, more com-

monly, by magnitude and phase. In many applications, the phase is ignored because

the majority of the information is contained inside the magnitude. Nevertheless, if

the original image must be reconstructed using the 2D-IDFT, the phase information

is absolutely crucial to avoid corrupted image reconstruction [257]. Since the mag-

nitude of the greatest DC component with relation to the other frequencies might

be quite scattered, a logarithmic transformation is generally used to increase the

information contained in low-frequency components:

f̃ (k, l) = c log(1+Mk,l) (5.3)
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where c is a scaling factor set to unity in the present research, and

Mk,l =
√

ℜ( f (k, l))2 +ℑ( f (k, l))2 (5.4)

is the magnitude for each pixel in the frequency domain. Among the many helpful

aspects of the FT, the convolution property is the most essential. Thanks to it the con-

volution operation in the input domain becomes a strainghtfoerward multiplication

in the Fourier domain. Digital filters can be used in image processing to smooth an

image by suppressing high frequencies or to detect edges by deleting low frequencies.

[257]. These operations are accomplished by a filter kernel function h(r,s) which

slides on the image and computes a correlation between the kernel receptive field

and the input image: g(r,s) = h(r,s)∗a(r,s). Specifically, the convolution is a corre-

lation procedure operating with a flipped kernel h(−r,−s). The above-mentioned

computation, which is at the basis of convolutional neural networks (CNN), may

be performed more effectively in the frequency domain thanks to the convolution

property.

In the current study, the 2D-FFT has been adopted to perform a pre-processing of

the GPR linings profiles described so far. This procedure may aid in data compression

whereas preserving the geometric structure of the original digital image. The 2D-

FFT recognizes vertical and horizontal patterns in the input image whereas keeping

information about such alignments in the Fourier domain’s most dominant frequency

components. Additionally, as shown in Figure 5.5, the 2D-FFT enables for the

removal of horizontal periodic components, characteristic of the GPR profiles in the

depth direction. The impacts of 2D-FFT preprocessing on GPR profiles acquired

from the road tunnel survey campaign are shown in Figure 5.5 through two examples.
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(a) (b) (c) (d)

Fig. 5.5 Two examples of 2D-FFT pre-processing of road tunnels GPR profiles. (a) and (c):
samples extracted from the entire GPR profile; (b) and (d): 2D-FFT magnitude pre-processed
images

5.3 Results

A confusion matrix and an accuracy value have been utilized to check the algorithm

classification performance for each level. The actual classes have been shown in the

rows of the confusion matrix, whereas the predicted labels in the columns. A correct

classification coincides to the values placed on the diagonal of the matrix. The ratio

between the confusion matrix trace and the total sum of the matrix values has been

used to get the accuracy value. The displayed confusion matrices and accuracies

have been calculated as an arithmetic mean based on the results of ten (as stated

below) test folds obtained using a K-fold validation technique. Furthermore, an error

estimation using the Root Mean Square Error (RMSE) index has been computed

for each of the test folds, and then their average has been calculated and used as

the final indicator. It is worth mentioning that the training of the algorithm for the

six levels used the same number of data for both classes. With this homogeneity,

no specific methodologies have been needed to address issues of class imbalance

[258]. The data of each class have been randomly divided into k groups (folds)

using the K-fold validation methodology, with one "fold" utilized for testing, one

for validation, and (k-2) folds for training [259, 260]. The cross-validation has been

performed with a split value of k equal to 10. As outlined by empirical evidence,

such a value generates test error rate estimates that are free of both significant bias

and wide variance [261]. Lastly, an additional tool for evaluating the models has

been the convergence graph (loss/accuracy versus number of iterations). Figure 5.6

depicts the loss/accuracy versus the number of iterations for one of the ten cases
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related to the Level 1, using the GPR profile (without the bidimensional Fourier

Transform) and shows the adherence of the trend to the expected behavior.

Fig. 5.6 Training progress, loss, and accuracy versus iterations

The results obtained with and without the application of the bidimensional Fourier

transform, for each level, are shown in the Tables 5.5 and 5.6, respectively. They are

expressed using the confusion matrix, the accuracy, and the RMSE index.
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Table 5.5 Confusion Matrix for Levels 1, 2a, 2b, 3, 4, 5 and 6. without FT application

Confusion Matrix – Level 1

Real Class C1: predicted C2: predicted Performance

Metrics

C1 93.3% 6.7% Accuracy: 92.6%

C2 8.1% 91.9% RMSE: 24.5%

Confusion Matrix – Level 2a

Real Class C3: predicted C4: predicted Performance

Metrics

C3 98.4% 1.6% Accuracy:97.3%

C4 3.9% 96.1% RMSE: 15.7%

Confusion Matrix – Level 2b

Real Class C5: predicted C6: predicted Performance

Metrics

C5 90.9% 9.1% Accuracy: 90.4%

C6 10.1% 89.9% RMSE: 17.4%

Confusion Matrix – Level 3

Real Class C7: predicted C8: predicted Performance

Metrics

C7 92.7% 7.3% Accuracy: 95.9%

C8 0.9% 99.1% RMSE: 17.4%

Confusion Matrix – Level 4

Real Class C9: predicted C10: predicted Performance

Metrics

C9 94.9% 5.1% Accuracy: 91.8%

C10 11.3% 88.7% RMSE: 25.6%

Confusion Matrix – Level 5

Real Class C11: pre-

dicted

C12: predicted Performance

Metrics

C11 98.8% 1.2% Accuracy: 98.2%

C12 2.2% 97.8% RMSE: 5.2%

Confusion Matrix – Level 6

Real Class C13: pre-

dicted

C14: predicted Performance

Metrics

C13 96.6% 3.4% Accuracy: 95.3%

C14 5.9% 94.1% RMSE: 17.1%
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Table 5.6 Confusion Matrix for Levels 1, 2a, 2b, 3, 4, 5, and 6 with FT application

Confusion Matrix – Level 1

Real Class C1: predicted C2: predicted Performance

Metrics

C1 87.9% 12.1% Accuracy: 88%

C2 11.4% 88.6% RMSE: 31.5%

Confusion Matrix – Level 2a

Real Class C3: predicted C4: predicted Performance

Metrics

C3 79.3% 20.7% Accuracy: 83.1%

C4 13.0% 87.0% RMSE: 37.2%

Confusion Matrix – Level 2b

Real Class C5: predicted C6: predicted Performance

Metrics

C5 73.5% 26.5% Accuracy: 76.3%

C6 20.9% 79.1% RMSE: 44.3%

Confusion Matrix – Level 3

Real Class C7: predicted C8: predicted Performance

Metrics

C7 97.8% 0.22% Accuracy: 94.4%

C8 9.0% 91.0% RMSE: 20.6%

Confusion Matrix – Level 4

Real Class C9: predicted C10: predicted Performance

Metrics

C9 83.9% 16.1% Accuracy: 85.1%

C10 13.6% 86.4% RMSE: 38.3%

Confusion Matrix – Level 5

Real Class C11: pre-

dicted

C12: predicted Performance

Metrics

C11 85.7% 14.3% Accuracy: 90%

C12 5.9% 94.1% RMSE: 28.6%

Confusion Matrix – Level 6

Real Class C13: pre-

dicted

C14: predicted Performance

Metrics

C13 92.4% 7.6% Accuracy: 91%

C14 11.3% 88.7% RMSE: 25.8%
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The outcomes obtained after the FT application on the GPR profile showed

a decrease in accuracy for all levels with respect to the results obtained without

this operation. Whereas the accuracy obtained following the approach without

such operation showed values greater than 90% and with an average of 94.5 %

, the ones obtained with the trained ResNet-50 on FTs show values greater than

80%, unless level 2b, and with an average of 86.8%. The results shown so far

highlight the reliability of the presented methodology, as well as the fact that for such

types of images the pre-processing phase with the FT likely produces an excessive

compression of the data, resulting in a decrease in the obtained accuracy levels.

5.4 In Closing

In this Chaper, a hierarchical multi-level classification approach has been proposed

and discussed for tunnel lining assessment. The advantages of using it are as follows:

• the automatic classification of a large number of defects;

• the reduction in time and cost associated with using highly qualified inspectors

to evaluate GPR patterns;

• the reduction of supplementary invasive tests to be used in conjunction with

GPR for defect characterisation, resulting in a reduction in diagnostic invasive-

ness;

• the creation of a methodology that can be incorporated into a holistic mainte-

nance strategy.
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Conclusions

In this thesis, structural monitoring strategies have been developed and tested for

control the state of key strategic facilities, such as bridges and tunnels. Such in-

frastructure, subject to ageing and degradation, requires the development of timely,

effective and economically sustainable control methodologies.

Nowadays, several techniques are available to recognize damage in civil engineer-

ing structures. Many researches have been developed to identify structural damage

in the dynamic field, less so in the static one. Nevertheless, they have been tested to

numerical case studies in the majority of cases.

The goal of this thesis has been to design approaches capable of dealing with

issues related to specific structural typology, particularly those that are widely spread,

attaining a high level of automation, economic resources optimization, and reliability

by means of the use of real case studies and numerical simulations to validate them.

After a brief introduction on the state-of-the-art methodologies, this thesis has

dedicated one chapter to a customized monitoring system for a highway arch bridge

(Chapter 2), one to strategies for simply-supported prestressed concrete railway

bridges assessment (Chapter 3), one to control techniques of similar and widely

replicated structures such as pedestrian bridges (Chapter 4), and one to methodologies

for tunnel lining assessment (Chapter 5).

Specifically, in Chapter 2, methodologies for damage detection in a highway

steel arch bridge have been presented. The specific case study, representing a

not so common bridge typology in Italy, provided the opportunity to analyze the
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structural behavior in real-time considering both static and dynamic response. In

detail, the monitoring architecture and the acquisition characteristics have allowed

for a greater understanding of the impact of several factors, such as data volume and

environmental actions, on modal parameters estimation. Furthermore, unsupervised

algorithms (K-means) have proven to be a valuable aid in the detection of damage

with low severity. Further developments of this work are left for future research

efforts.

In Chapter 3, two approaches, designed to be complementary, have been proposed

to perform the structural assessment of simply-supported prestressed concrete bridges.

The first one has been developed for long-term monitoring and the second one for

periodic monitoring on the basis of safety and economic principles due to the large

number of such bridges that require control. The first approach investigated the static

and environmental data collected on a prestressed railway bridge during its first few

years of service. Correlation models have been generated following evaluations of

cause-effect relationships between the measured quantities in the healthy condition.

Two aspects have been thoroughly examined: the assessment of the midspan strain

of the unloaded deck and the evaluation of pier rotations and joint expansion. The

strengts of such approach are the selection of features composing the correlation

models, the use of pre-processing operations (z-score normalization) to give data

repetitiveness over time, the exploitation of some temporal parameters to compensate

for the lack of some environmental ones, the selection and the training of specific

regression model, and the proposed damage index. The combination of all such

factors proved to be extremely effective. The results of the signal analysis and

reconstruction approach led to the creation of undamaged-condition alarm thresholds

(UCT) and successful fault detection, which outperformed traditional thresholds

(DT) based on design values. In the second part of this Chapter, attention has

been paid to the development of a damage identification method focused on the

minimization of sensors in the monitoring network, on the reduction of computational

time, and on the achievement of high accuracy in localizing damage and estimating

its severity. To this aim, a hybrid technique to solve the inverse problem of damage

localization and severity estimation in beam structures has been proposed. The

influence lines (ILs) are used in the first phase of the approach to obtain information

about the damage location. Then, by updating a finite-element model, a genetic

algorithm (GA), which is at the crux of the technique, exploits static parameters such

as displacements and rotations at a few locations to estimate the bending stiffness
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along the structure. The information gathered in the first phase is used in the second

one to reduce the number of GA design variables and, as a result, the computational

time and improve the accuracy of GA solutions by allowing a properly trained

neural network to select appropriate coefficients for the proposed cost function in the

genetic algorithm. The proposed method has been successfully evaluated on a simple

supported beam problem using data from a real bridge to assess its effectiveness to

actual values, taking into account damage scenarios defined by localized bending

stiffness reductions. Besides, numerical experiments have been also conducted to

test the procedure when the beam length and geometric properties vary. The obtained

outcomes look promising and encourage further developments. Although more effort

is needed before real-world applications can be implemented, the proposed strategy

is generalizable. Future improvements could entail the use of more refined structural

models (grillage), as well as the use of influence surfaces for damage localization,

other damage indicators, and the analysis of multiple damage scenarios.

In Chapter 4, the problem of managing a large number of bridges of the same

type has been coped by means of Transfer Learning methods. The performance, the

potential, and the limitations of such approach have been demonstrated first in a

numerical basic supported beam model and then by means of the data recorded on

two real pedestrian bridges. The results of these analyses have been very encouraging

as they allowed the potential of this method to be effectively investigated and tested

and revealed its efficient use for similar and extensively replicated structures, such

as pedestrian bridges.

In Chapter 5, the research switched its focus to the assessment of the second

most common engineering element in the italian infrastructural assets, namely the

tunnels. The proposed hierarchical multi-level damage classification approach, based

on the use of the Ground Penetrating Radar (GPR), provided several advantages.

Among them, the automated classification of several types of defects, the time and

cost savings involved with evaluating GPR patterns with highly qualified inspectors,

the reduction in the number of supplemental invasive tests to be utilized coupled

with GPR for defect characterization (resulting in less diagnostic invasiveness), and

the development of a methodology that can be used as part of a holistic maintenance

strategy.

To summarize, as might have been appreciated throughout the reading of the

previous Chapters, the focus of this thesis has been directed onto the development of
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structural health monitoring strategies for the control of large-scale infrastructures.

Such strategies have been customized to deal with the issues related to the typology

to which the infrastructures belong in order to obtain reliable information about the

current structural state and predict its evolution in a sustainable economic way.
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