3 research outputs found

    An Improvement of Load Flow Solution for Power System Networks using Evolutionary-Swarm Intelligence Optimizers

    Get PDF
    Load flow report which reveals the existing state of the power system network under steady operating conditions, subject to certain constraints is being bedeviled by issues of accuracy and convergence. In this research, five AI-based load flow solutions classified under evolutionary-swarm intelligence optimizers are deployed for power flow studies in the 330kV, 34-bus, 38-branch section of the Nigerian transmission grid. The evolutionary-swarm optimizers used in this research consist of one evolutionary algorithm and four swarm intelligence algorithms namely; biogeography-based optimization (BBO), particle swarm optimization (PSO), spider monkey optimization (SMO), artificial bee colony optimization (ABCO) and ant colony optimization (ACO). BBO as a sole evolutionary algorithm is being configured alongside four swarm intelligence optimizers for an optimal power flow solution with the aim of performance evaluation through physical and statistical means. Assessment report upon application of these standalone algorithms on the 330kV Nigerian grid under two (accuracy and convergence) metrics produced PSO and ACO as the best-performed algorithms. Three test cases (scenarios) were adopted based on the number of iterations (100, 500, and 1000) for proper assessment of the algorithms and the results produced were validated using mean average percentage error (MAPE) with values of voltage profile created by each solution algorithm in line with the IEEE voltage regulatory standards. All algorithms proved to be good load flow solvers with distinct levels of precision and speed. While PSO and SMO produced the best and worst results for accuracy with MAPE values of 3.11% and 36.62%, ACO and PSO produced the best and worst results for convergence (computational speed) after 65 and 530 average number of iterations. Since accuracy supersedes speed from scientific considerations, PSO is the overall winner and should be cascaded with ACO for an automated hybrid swarm intelligence load flow model in future studies. Future research should consider hybridizing ACO and PSO for a more computationally efficient solution model

    Hybrid harmony search algorithm for continuous optimization problems

    Get PDF
    Harmony Search (HS) algorithm has been extensively adopted in the literature to address optimization problems in many different fields, such as industrial design, civil engineering, electrical and mechanical engineering problems. In order to ensure its search performance, HS requires extensive tuning of its four parameters control namely harmony memory size (HMS), harmony memory consideration rate (HMCR), pitch adjustment rate (PAR), and bandwidth (BW). However, tuning process is often cumbersome and is problem dependent. Furthermore, there is no one size fits all problems. Additionally, despite many useful works, HS and its variant still suffer from weak exploitation which can lead to poor convergence problem. Addressing these aforementioned issues, this thesis proposes to augment HS with adaptive tuning using Grey Wolf Optimizer (GWO). Meanwhile, to enhance its exploitation, this thesis also proposes to adopt a new variant of the opposition-based learning technique (OBL). Taken together, the proposed hybrid algorithm, called IHS-GWO, aims to address continuous optimization problems. The IHS-GWO is evaluated using two standard benchmarking sets and two real-world optimization problems. The first benchmarking set consists of 24 classical benchmark unimodal and multimodal functions whilst the second benchmark set contains 30 state-of-the-art benchmark functions from the Congress on Evolutionary Computation (CEC). The two real-world optimization problems involved the three-bar truss and spring design. Statistical analysis using Wilcoxon rank-sum and Friedman of IHS-GWO’s results with recent HS variants and other metaheuristic demonstrate superior performance

    Long-Term Memory Harris’ Hawk Optimization for High Dimensional and Optimal Power Flow Problems

    No full text
    corecore