703 research outputs found

    An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations

    Get PDF
    We investigate the long tim behavior of the following efficient second order in time scheme for the 2D Navier-Stokes equation in a periodic box: \frac{3\omega^{n+1}-4\omega^n+\omega^{n-1}}{2k} + \nabla^\perp(2\psi^n-\psi^{n-1})\cdot\nabla(2\omega^n-\omega^{n-1}) - \nu\Delta\omega^{n+1} = f^{n+1}, \quad -\Delta \psi^n = \om^n. The scheme is a combination of a 2nd order in time backward-differentiation (BDF) and a special explicit Adams-Bashforth treatment of the advection term. Therefore only a linear constant coefficient Poisson type problem needs to be solved at each time step. We prove uniform in time bounds on this scheme in \dL2, \dH1 and H˙per2\dot{H}^2_{per} provided that the time-step is sufficiently small. These time uniform estimates further lead to the convergence of long time statistics (stationary statistical properties) of the scheme to that of the NSE itself at vanishing time-step. Fully discrete schemes with either Galerkin Fourier or collocation Fourier spectral method are also discussed

    On the fourth-order accurate compact ADI scheme for solving the unsteady Nonlinear Coupled Burgers' Equations

    Full text link
    The two-dimensional unsteady coupled Burgers' equations with moderate to severe gradients, are solved numerically using higher-order accurate finite difference schemes; namely the fourth-order accurate compact ADI scheme, and the fourth-order accurate Du Fort Frankel scheme. The question of numerical stability and convergence are presented. Comparisons are made between the present schemes in terms of accuracy and computational efficiency for solving problems with severe internal and boundary gradients. The present study shows that the fourth-order compact ADI scheme is stable and efficient

    High-order Methods for a Pressure Poisson Equation Reformulation of the Navier-Stokes Equations with Electric Boundary Conditions

    Full text link
    Pressure Poisson equation (PPE) reformulations of the incompressible Navier-Stokes equations (NSE) replace the incompressibility constraint by a Poisson equation for the pressure and a suitable choice of boundary conditions. This yields a time-evolution equation for the velocity field only, with the pressure gradient acting as a nonlocal operator. Thus, numerical methods based on PPE reformulations, in principle, have no limitations in achieving high order. In this paper, it is studied to what extent high-order methods for the NSE can be obtained from a specific PPE reformulation with electric boundary conditions (EBC). To that end, implicit-explicit (IMEX) time-stepping is used to decouple the pressure solve from the velocity update, while avoiding a parabolic time-step restriction; and mixed finite elements are used in space, to capture the structure imposed by the EBC. Via numerical examples, it is demonstrated that the methodology can yield at least third order accuracy in space and time
    • …
    corecore