144 research outputs found

    Asymmetric Feature Maps with Application to Sketch Based Retrieval

    Full text link
    We propose a novel concept of asymmetric feature maps (AFM), which allows to evaluate multiple kernels between a query and database entries without increasing the memory requirements. To demonstrate the advantages of the AFM method, we derive a short vector image representation that, due to asymmetric feature maps, supports efficient scale and translation invariant sketch-based image retrieval. Unlike most of the short-code based retrieval systems, the proposed method provides the query localization in the retrieved image. The efficiency of the search is boosted by approximating a 2D translation search via trigonometric polynomial of scores by 1D projections. The projections are a special case of AFM. An order of magnitude speed-up is achieved compared to traditional trigonometric polynomials. The results are boosted by an image-based average query expansion, exceeding significantly the state of the art on standard benchmarks.Comment: CVPR 201

    Efficient storage and decoding of SURF feature points

    Get PDF
    Practical use of SURF feature points in large-scale indexing and retrieval engines requires an efficient means for storing and decoding these features. This paper investigates several methods for compression and storage of SURF feature points, considering both storage consumption and disk-read efficiency. We compare each scheme with a baseline plain-text encoding scheme as used by many existing SURF implementations. Our final proposed scheme significantly reduces both the time required to load and decode feature points, and the space required to store them on disk
    corecore