7 research outputs found

    Ranking Functions for Vector Addition Systems

    Full text link
    Vector addition systems are an important model in theoretical computer science and have been used for the analysis of systems in a variety of areas. Termination is a crucial property of vector addition systems and has received considerable interest in the literature. In this paper we give a complete method for the construction of ranking functions for vector addition systems with states. The interest in ranking functions is motivated by the fact that ranking functions provide valuable additional information in case of termination: They provide an explanation for the progress of the vector addition system, which can be reported to the user of a verification tool, and can be used as certificates for termination. Moreover, we show how ranking functions can be used for the computational complexity analysis of vector addition systems (here complexity refers to the number of steps the vector addition system under analysis can take in terms of the given initial vector)

    The Complexity of Reachability in Affine Vector Addition Systems with States

    Get PDF
    Vector addition systems with states (VASS) are widely used for the formal verification of concurrent systems. Given their tremendous computational complexity, practical approaches have relied on techniques such as reachability relaxations, e.g., allowing for negative intermediate counter values. It is natural to question their feasibility for VASS enriched with primitives that typically translate into undecidability. Spurred by this concern, we pinpoint the complexity of integer relaxations with respect to arbitrary classes of affine operations. More specifically, we provide a trichotomy on the complexity of integer reachability in VASS extended with affine operations (affine VASS). Namely, we show that it is NP-complete for VASS with resets, PSPACE-complete for VASS with (pseudo-)transfers and VASS with (pseudo-)copies, and undecidable for any other class. We further present a dichotomy for standard reachability in affine VASS: it is decidable for VASS with permutations, and undecidable for any other class. This yields a complete and unified complexity landscape of reachability in affine VASS. We also consider the reachability problem parameterized by a fixed affine VASS, rather than a class, and we show that the complexity landscape is arbitrary in this setting

    Affine Extensions of Integer Vector Addition Systems with States

    Get PDF
    We study the reachability problem for affine Z\mathbb{Z}-VASS, which are integer vector addition systems with states in which transitions perform affine transformations on the counters. This problem is easily seen to be undecidable in general, and we therefore restrict ourselves to affine Z\mathbb{Z}-VASS with the finite-monoid property (afmp-Z\mathbb{Z}-VASS). The latter have the property that the monoid generated by the matrices appearing in their affine transformations is finite. The class of afmp-Z\mathbb{Z}-VASS encompasses classical operations of counter machines such as resets, permutations, transfers and copies. We show that reachability in an afmp-Z\mathbb{Z}-VASS reduces to reachability in a Z\mathbb{Z}-VASS whose control-states grow linearly in the size of the matrix monoid. Our construction shows that reachability relations of afmp-Z\mathbb{Z}-VASS are semilinear, and in particular enables us to show that reachability in Z\mathbb{Z}-VASS with transfers and Z\mathbb{Z}-VASS with copies is PSPACE-complete. We then focus on the reachability problem for affine Z\mathbb{Z}-VASS with monogenic monoids: (possibly infinite) matrix monoids generated by a single matrix. We show that, in a particular case, the reachability problem is decidable for this class, disproving a conjecture about affine Z\mathbb{Z}-VASS with infinite matrix monoids we raised in a preliminary version of this paper. We complement this result by presenting an affine Z\mathbb{Z}-VASS with monogenic matrix monoid and undecidable reachability relation

    Continuous One-Counter Automata

    Full text link
    We study the reachability problem for continuous one-counter automata, COCA for short. In such automata, transitions are guarded by upper and lower bound tests against the counter value. Additionally, the counter updates associated with taking transitions can be (non-deterministically) scaled down by a nonzero factor between zero and one. Our three main results are as follows: (1) We prove that the reachability problem for COCA with global upper and lower bound tests is in NC2; (2) that, in general, the problem is decidable in polynomial time; and (3) that it is decidable in the polynomial hierarchy for COCA with parametric counter updates and bound tests

    Logics for Continuous Reachability in Petri Nets and Vector Addition Systems with States

    Get PDF
    This paper studies sets of rational numbers definable by continuous Petri nets and extensions thereof. First, we identify a polynomial-time decidable fragment of existential FO(Q, +, <) and show that the sets of rationals definable in this fragment coincide with reachability sets of continuous Petri nets. Next, we introduce and study continuous vector addition systems with states (CVASS), which are vector addition systems with states in which counters may hold non-negative rational values, and in which the effect of a transition can be scaled by a positive rational number smaller or equal to one. This class strictly generalizes continuous Petri nets by additionally allowing for discrete control-state information. We prove that reachability sets of CVASS are equivalent to the sets of rational numbers definable in existential FO(Q, +, <) from which we can conclude that reachability in CVASS is NP-complete. Finally, our results explain and yield as corollaries a number of polynomial-time algorithms for decision problems that have recently been studied in the literature

    Logics for Continuous Reachability in Petri Nets and Vector Addition Systems with States

    No full text
    This paper studies sets of rational numbers definable by continuous Petri nets and extensions thereof. First, we identify a polynomial-time decidable fragment of existential FO(Q, +, &lt;) and show that the sets of rationals definable in this fragment coincide with reachability sets of continuous Petri nets. Next, we introduce and study continuous vector addition systems with states (CVASS), which are vector addition systems with states in which counters may hold non-negative rational values, and in which the effect of a transition can be scaled by a positive rational number smaller or equal to one. This class strictly generalizes continuous Petri nets by additionally allowing for discrete control-state information. We prove that reachability sets of CVASS are equivalent to the sets of rational numbers definable in existential FO(Q, +, &lt;) from which we can conclude that reachability in CVASS is NP-complete. Finally, our results explain and yield as corollaries a number of polynomial-time algorithms for decision problems that have recently been studied in the literature
    corecore