57 research outputs found

    Exploring an agent as an economic insider threat solution

    Get PDF
    The insider threat is a security problem that is well-known and has a long history, yet it still remains an invisible enemy. Insiders know the security processes and have accesses that allow them to easily cover their tracks. In recent years the idea of monitoring separately for these threats has come into its own. However, the tools currently in use have disadvantages and one of the most effective techniques of human review is costly. This paper explores the development of an intelligent agent that uses already in-place computing material for inference as an inexpensive monitoring tool for insider threats. Design Science Research (DSR) is a methodology used to explore and develop an IT artifact, such as for this intelligent agent research. This methodology allows for a structure that can guide a deep search method for problems that may not be possible to solve or could add to a phenomenological instantiation

    Pathway toward prior knowledge-integrated machine learning in engineering

    Full text link
    Despite the digitalization trend and data volume surge, first-principles models (also known as logic-driven, physics-based, rule-based, or knowledge-based models) and data-driven approaches have existed in parallel, mirroring the ongoing AI debate on symbolism versus connectionism. Research for process development to integrate both sides to transfer and utilize domain knowledge in the data-driven process is rare. This study emphasizes efforts and prevailing trends to integrate multidisciplinary domain professions into machine acknowledgeable, data-driven processes in a two-fold organization: examining information uncertainty sources in knowledge representation and exploring knowledge decomposition with a three-tier knowledge-integrated machine learning paradigm. This approach balances holist and reductionist perspectives in the engineering domain.Comment: 8 pages, 4 figure

    Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines

    Get PDF
    The emerging contemporary natural philosophy provides a common ground for the integrative view of the natural, the artificial, and the human-social knowledge and practices. Learning process is central for acquiring, maintaining, and managing knowledge, both theoretical and practical. This paper explores the relationships between the present advances in understanding of learning in the sciences of the artificial (deep learning, robotics), natural sciences (neuroscience, cognitive science, biology), and philosophy (philosophy of computing, philosophy of mind, natural philosophy). The question is, what at this stage of the development the inspiration from nature, specifically its computational models such as info-computation through morphological computing, can contribute to machine learning and artificial intelligence, and how much on the other hand models and experiments in machine learning and robotics can motivate, justify, and inform research in computational cognitive science, neurosciences, and computing nature. We propose that one contribution can be understanding of the mechanisms of ‘learning to learn’, as a step towards deep learning with symbolic layer of computation/information processing in a framework linking connectionism with symbolism. As all natural systems possessing intelligence are cognitive systems, we describe the evolutionary arguments for the necessity of learning to learn for a system to reach human-level intelligence through evolution and development. The paper thus presents a contribution to the epistemology of the contemporary philosophy of nature

    Graph Edit Distance Reward: Learning to Edit Scene Graph

    Full text link
    Scene Graph, as a vital tool to bridge the gap between language domain and image domain, has been widely adopted in the cross-modality task like VQA. In this paper, we propose a new method to edit the scene graph according to the user instructions, which has never been explored. To be specific, in order to learn editing scene graphs as the semantics given by texts, we propose a Graph Edit Distance Reward, which is based on the Policy Gradient and Graph Matching algorithm, to optimize neural symbolic model. In the context of text-editing image retrieval, we validate the effectiveness of our method in CSS and CRIR dataset. Besides, CRIR is a new synthetic dataset generated by us, which we will publish it soon for future use.Comment: 14 pages, 6 figures, ECCV camera ready versio

    Brains as naturally emerging turing machines

    Full text link
    Abstract—It has been shown that a Developmental Network (DN) can learn any Finite Automaton (FA) [29] but FA is not a general purpose automaton by itself. This theoretical paper presents that the controller of any Turing Machine (TM) is equivalent to an FA. It further models a motivation-free brain — excluding motivation e.g., emotions — as a TM inside a grounded DN — DN with the real world. Unlike a traditional TM, the TM-in-DN uses natural encoding of input and output and uses emergent internal representations. In Artificial Intelligence (AI) there are two major schools, symbolism and connectionism. The theoretical result here implies that the connectionist school is at least as powerful as the symbolic school also in terms of the general-purpose nature of TM. Furthermore, any TM simulated by the DN is grounded and uses natural encoding so that the DN autonomously learns any TM directly from natural world without a need for a human to encode its input and output. This opens the door for the DN to fully autonomously learn any TM, from a human teacher, reading a book, or real world events. The motivated version of DN [31] further enables a DN to go beyond action-supervised learning — so as to learn based on pain-avoidance, pleasure seeking, and novelty seeking [31]. I
    • …
    corecore