25,835 research outputs found

    On Forging SPHINCS+^{+}-Haraka Signatures on a Fault-Tolerant Quantum Computer

    Get PDF
    SPHINCS+^{+} is a state-of-the-art hash based signature scheme, the security of which is either based on SHA-256, SHAKE-256 or on the Haraka hash function. In this work, we perform an in-depth analysis of how the hash functions are embedded into SPHINCS+^+ and how the quantum pre-image resistance impacts the security of the signature scheme. Subsequently, we evaluate the cost of implementing Grover’s quantum search algorithm to find a pre-image that admits a universal forgery. In particular, we provide quantum implementations of the Haraka and SHAKE-256 hash functions in Q# and consider the efficiency of attacks in the context of fault-tolerant quantum computers. We restrict our findings to SPHINCS+^+-128 due to the limited security margin of Haraka. Nevertheless, we present an attack that performs better, to the best of our knowledge, than previously published attacks. We can forge a SPHINCS+^+-128-Haraka signature in about 1.5⋅2901.5\cdot 2^{90} surface code cycles and 2.03⋅1062.03\cdot 10^6 physical qubits, translating to about 1.55⋅21011.55\cdot 2^{101} logical-qubit-cycles. For SHAKE-256, the same attack requires 8.65⋅1068.65\cdot 10^6 qubits and 1.6⋅2841.6\cdot 2^{84} cycles resulting in about 2.65⋅2992.65\cdot 2^{99} logical-qubit-cycles

    Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3

    Get PDF
    We investigate the cost of Grover's quantum search algorithm when used in the context of pre-image attacks on the SHA-2 and SHA-3 families of hash functions. Our cost model assumes that the attack is run on a surface code based fault-tolerant quantum computer. Our estimates rely on a time-area metric that costs the number of logical qubits times the depth of the circuit in units of surface code cycles. As a surface code cycle involves a significant classical processing stage, our cost estimates allow for crude, but direct, comparisons of classical and quantum algorithms. We exhibit a circuit for a pre-image attack on SHA-256 that is approximately 2153.82^{153.8} surface code cycles deep and requires approximately 212.62^{12.6} logical qubits. This yields an overall cost of 2166.42^{166.4} logical-qubit-cycles. Likewise we exhibit a SHA3-256 circuit that is approximately 2146.52^{146.5} surface code cycles deep and requires approximately 2202^{20} logical qubits for a total cost of, again, 2166.52^{166.5} logical-qubit-cycles. Both attacks require on the order of 21282^{128} queries in a quantum black-box model, hence our results suggest that executing these attacks may be as much as 275275 billion times more expensive than one would expect from the simple query analysis.Comment: Same as the published version to appear in the Selected Areas of Cryptography (SAC) 2016. Comments are welcome

    Consistent SDNs through Network State Fuzzing

    No full text
    The conventional wisdom is that a software-defined network (SDN) operates under the premise that the logically centralized control plane has an accurate representation of the actual data plane state. Nevertheless, bugs, misconfigurations, faults or attacks can introduce inconsistencies that undermine correct operation. Previous work in this area, however, lacks a holistic methodology to tackle this problem and thus, addresses only certain parts of the problem. Yet, the consistency of the overall system is only as good as its least consistent part. Motivated by an analogy of network consistency checking with program testing, we propose to add active probe-based network state fuzzing to our consistency check repertoire. Hereby, our system, PAZZ, combines production traffic with active probes to continuously test if the actual forwarding path and decision elements (on the data plane) correspond to the expected ones (on the control plane). Our insight is that active traffic covers the inconsistency cases beyond the ones identified by passive traffic. PAZZ prototype was built and evaluated on topologies of varying scale and complexity. Our results show that PAZZ requires minimal network resources to detect persistent data plane faults through fuzzing and localize them quickly

    Consistent SDNs through Network State Fuzzing

    Full text link
    The conventional wisdom is that a software-defined network (SDN) operates under the premise that the logically centralized control plane has an accurate representation of the actual data plane state. Unfortunately, bugs, misconfigurations, faults or attacks can introduce inconsistencies that undermine correct operation. Previous work in this area, however, lacks a holistic methodology to tackle this problem and thus, addresses only certain parts of the problem. Yet, the consistency of the overall system is only as good as its least consistent part. Motivated by an analogy of network consistency checking with program testing, we propose to add active probe-based network state fuzzing to our consistency check repertoire. Hereby, our system, PAZZ, combines production traffic with active probes to periodically test if the actual forwarding path and decision elements (on the data plane) correspond to the expected ones (on the control plane). Our insight is that active traffic covers the inconsistency cases beyond the ones identified by passive traffic. PAZZ prototype was built and evaluated on topologies of varying scale and complexity. Our results show that PAZZ requires minimal network resources to detect persistent data plane faults through fuzzing and localize them quickly while outperforming baseline approaches.Comment: Added three extra relevant references, the arXiv later was accepted in IEEE Transactions of Network and Service Management (TNSM), 2019 with the title "Towards Consistent SDNs: A Case for Network State Fuzzing

    Denial-of-Service Resistance in Key Establishment

    Get PDF
    Denial of Service (DoS) attacks are an increasing problem for network connected systems. Key establishment protocols are applications that are particularly vulnerable to DoS attack as they are typically required to perform computationally expensive cryptographic operations in order to authenticate the protocol initiator and to generate the cryptographic keying material that will subsequently be used to secure the communications between initiator and responder. The goal of DoS resistance in key establishment protocols is to ensure that attackers cannot prevent a legitimate initiator and responder deriving cryptographic keys without expending resources beyond a responder-determined threshold. In this work we review the strategies and techniques used to improve resistance to DoS attacks. Three key establishment protocols implementing DoS resistance techniques are critically reviewed and the impact of misapplication of the techniques on DoS resistance is discussed. Recommendations on effectively applying resistance techniques to key establishment protocols are made

    Efficient hardware implementations of high throughput SHA-3 candidates keccak, luffa and blue midnight wish for single- and multi-message hashing

    Get PDF
    In November 2007 NIST announced that it would organize the SHA-3 competition to select a new cryptographic hash function family by 2012. In the selection process, hardware performances of the candidates will play an important role. Our analysis of previously proposed hardware implementations shows that three SHA-3 candidate algorithms can provide superior performance in hardware: Keccak, Luffa and Blue Midnight Wish (BMW). In this paper, we provide efficient and fast hardware implementations of these three algorithms. Considering both single- and multi-message hashing applications with an emphasis on both speed and efficiency, our work presents more comprehensive analysis of their hardware performances by providing different performance figures for different target devices. To our best knowledge, this is the first work that provides a comparative analysis of SHA-3 candidates in multi-message applications. We discover that BMW algorithm can provide much higher throughput than previously reported if used in multi-message hashing. We also show that better utilization of resources can increase speed via different configurations. We implement our designs using Verilog HDL, and map to both ASIC and FPGA devices (Spartan3, Virtex2, and Virtex 4) to give a better comparison with those in the literature. We report total area, maximum frequency, maximum throughput and throughput/area of the designs for all target devices. Given that the selection process for SHA3 is still open; our results will be instrumental to evaluate the hardware performance of the candidates

    Quantum attacks on Bitcoin, and how to protect against them

    Get PDF
    The key cryptographic protocols used to secure the internet and financial transactions of today are all susceptible to attack by the development of a sufficiently large quantum computer. One particular area at risk are cryptocurrencies, a market currently worth over 150 billion USD. We investigate the risk of Bitcoin, and other cryptocurrencies, to attacks by quantum computers. We find that the proof-of-work used by Bitcoin is relatively resistant to substantial speedup by quantum computers in the next 10 years, mainly because specialized ASIC miners are extremely fast compared to the estimated clock speed of near-term quantum computers. On the other hand, the elliptic curve signature scheme used by Bitcoin is much more at risk, and could be completely broken by a quantum computer as early as 2027, by the most optimistic estimates. We analyze an alternative proof-of-work called Momentum, based on finding collisions in a hash function, that is even more resistant to speedup by a quantum computer. We also review the available post-quantum signature schemes to see which one would best meet the security and efficiency requirements of blockchain applications.Comment: 21 pages, 6 figures. For a rough update on the progress of Quantum devices and prognostications on time from now to break Digital signatures, see https://www.quantumcryptopocalypse.com/quantum-moores-law

    A class of structured P2P systems supporting browsing

    Get PDF
    Browsing is a way of finding documents in a large amount of data which is complementary to querying and which is particularly suitable for multimedia documents. Locating particular documents in a very large collection of multimedia documents such as the ones available in peer to peer networks is a difficult task. However, current peer to peer systems do not allow to do this by browsing. In this report, we show how one can build a peer to peer system supporting a kind of browsing. In our proposal, one must extend an existing distributed hash table system with a few features : handling partial hash-keys and providing appropriate routing mechanisms for these hash-keys. We give such an algorithm for the particular case of the Tapestry distributed hash table. This is a work in progress as no proper validation has been done yet.Comment: 14 page
    • …
    corecore